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Abstract 

The United States Air Force manages its civil infrastructure resource allocation 

via a two-dimensional risk model consisting of the consequence of failure and reliability.  

Air Force civil engineers currently use the BUILDER® Sustainment Management 

System to estimate and predict reliability at multiple levels within its civil infrastructure 

systems.  Alley (2015) developed and validated a probabilistic model to calculate 

reliability at the system level.  The probabilistic model was found to be a significant 

improvement over the currently employed BUILDER® model for four major building 

systems (electrical, HVAC, fire protection, and electrical).  This research assessed the 

performance and accuracy of both the probabilistic and BUILDER® model, focusing 

primarily on HVAC systems. 

This research used contingency analysis to assess the performance of each model 

for HVAC systems at six Air Force installations.  Evaluating the contingency analysis 

results over the range of possible reliability thresholds, it was found that both the 

BUILDER® and probabilistic model produced inflated reliability calculations for HVAC 

systems.  In light of these findings, this research employed a stochastic method, a 

Nonhomogenious Poisson Process (NHPP), in an attempt to produce accurate HVAC 

system reliability calculations.  This effort ultimately concluded that the data did not fit a 

NHPP for the systems considered but posits that other stochastic process can provide 

more accurate reliability calculations when compared to the two models analyzed. 
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VALIDATION AND IMPROVEMENT OF RELIABILITY METHODS FOR AIR 
FORCE BUILDING SYSTEMS 

 I.  Introduction 

Background 

In 2003, the United States Government Accountability Office (GAO) published a 

report highlighting the poor management of federal real property.  The GAO went as far 

to designate federal real property management as a “high risk area” (Teicholz, Noferi, & 

Thomas, 2005).  The findings of the 2003 report ultimately led to the publishing of 

Executive Order (EO) 13327, Federal Real Property Asset Management.  The order 

required the implementation of a federal real property asset management program.  The 

intent of the program was to focus on the efficient and economical use of real property 

assets.  The EO also required each department within the executive branch to determine 

what assets they owned, what assets they needed, and what it costs to manage those 

assets (Teicholz et al., 2005).  Each department was also responsible for developing and 

monitoring real property performance criteria. 

Given the requirements defined in EO 13327, the Department of Defense (DoD) 

and subsequently the United States Air Force (USAF) initiated the implementation of 

asset management principles in 2007.  Major General Del Eulberg, The Air Force Civil 

Engineer at the time, published a letter discussing the transition for USAF civil engineers 

into an asset management culture.  General Eulberg defined asset management as the 

“systematic and integrated process to manage natural and built assets and their associated 

performance, risk, and expenditures over their life cycles to support…organizational 

goals” (Eulberg, 2007).  General Eulberg’s primary objective for Air Force asset 
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management was to provide strategic direction by answering the similar questions 

highlighted in EO 13327: What assets does the USAF currently have?  What assets does 

the USAF need? What are the gaps? And, how do we optimize those assets, from both a 

cost and performance standpoint? 

To implement a program that answered these questions, the USAF published Air 

Force Policy Directive (AFPD) 32-10 Installations and Facilities.  AFPD 32-10 directs 

the employment of a sustainable asset management approach centered on providing 

effective mission support at the lowest possible life-cycle cost (Office of the Secretary of 

the Air Force, 2010).  The policy directive requires civil engineers to consider the return 

on investment and an asset’s mission support capability when developing asset 

investment strategies.  Additionally, engineers are required to determine how condition 

impacts the ability of an asset to adequately provide mission support.  Engineers must 

also develop a process to monitor mission support through the use of performance 

indicators (Office of the Secretary of the Air Force, 2010).  Although the directive 

outlines numerous requirements,  it creates a central theme for Air Force civil 

engineering: engineers need to manage their assets in a way that effectively support the 

the Air Force’s mission while minimizing asset life-cycle costs. 

BUILDER® 

AFPD 32-10 requires civil engineers to understand asset condition and monitor 

performance over the life cycle of an asset.  Additionally, Gen Eulberg highlights the 

central objectives to implementing an asset management program as understanding what 
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assets the USAF has in their inventory, the condition of those assets, the performance of 

those assets, and determining an optimal investment strategy.   

In order to more effectively manage assets that provide effective support while 

minimizing asset life-cycle cost, the Office of the Secretary of Defense (OSD) mandated 

the Air Force to implement the use of BUILDER®.  BUILDER® is a Sustainment 

Management System (SMS) developed by the United States Army Engineer Research 

and Development Center (ERDC) Construction Engineering Research Laboratory 

(CERL).  CERL created BUILDER® to provide engineers an established, objective 

standard to quantify and communicate asset condition, risk, and mission readiness.  In 

order to accomplish this, BUILDER® provided a standardized framework encompassing 

five areas: determining asset inventory, quantifying asset Condition Indices (CIs), 

predicting future CIs, generating work plans, and analyzing investment courses of action 

(COAs) (United States ARMY Corps of Engineers (USACE), 2015a).  Of these five 

areas the Air Force is primarily utilizing BUILDER® to determine asset inventory, 

quantify asset CIs, and predict future CIs.  Thus, the system allows engineers to track 

assets in their current portfolio and assess asset life-cycle performance. 

The Air Force uses CI to measure life-cycle performance.  Chapter II will explain 

the calculation of CIs at the various level within an asset’s hierarchy.  However, the basic 

principle of the BUILDER® model uses CI and replacement costs at lower levels of the 

system to calculate a CI at the system level.  It is important to note CI and reliability are 

thought to be “proportionally similar” (Grussing, Uzarski, & Marrano, 2006). That is to 

say that a system having a CI of 50 is assumed to have an approximate reliability of 50 
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percent.  Thus, CI is used to approximate an asset’s reliability, and subsequently it’s 

probability of failure 

Probabilistic Assessment of Failure 

In an attempt to improve the BUILDER® CI model, Alley (2015) proposes an 

alternate model for calculating the probability of failure at the system level within the 

BUILDER® hierarchy.  In contrast to the use of replacements cost, Alley calculates 

probability of failure at higher levels through the use of fault trees with fuzzy logic and 

importance weighting.  

Alley (2015), validates her model through the use of work order (WO) data 

contained in the Interim Work Information Management System (IWIMS) database.  This 

validation equates a WO coded as Emergency (E) or Urgent (U) to a failed state as these 

actions are not planned or preventive in nature, but reactive and corrective to a failed 

system.  Alley uses contingency analysis to both compare the models to one another and 

determine which model possessed more predictive capability for system level failures.  

When comparing the two models to one another, Alley determined that both models 

found similar results in only 10 out of 46 component-sections analyzed.  Leading to the 

conclusion that each model differs in their ability to calculate system level probability of 

failure.  Subsequently, Alley analyzed each model’s ability to predict system level 

failure.  Still using contingency analysis, Alley states that the BUILDER® model 

possessed little to no predictive ability, while the alternate model was able to predict 

probability of failure with a statistical significance of 0.12 (Alley, 2015). 
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Problem Statement 

The United States Air Force is concerned with providing assets that effectively 

support the mission while simultaneously minimizing life cycle costs.  Air Force 

engineers currently employ the BUILDER® Sustainment Management System to track 

civil infrastructure asset condition indices.  Engineers use these indices as a proportional 

measure of asset reliability and likelihood of failure (Air Force Civil Engineer Center 

(AFCEC), 2015).  The models discussed above focus on providing an accurate estimation 

of civil infrastructure reliability.  This research aims to further improve these reliability 

calculations by assessing the performance and accuracy of both models.  In doing so, this 

research focuses primarily on investigating underlying assumptions associated with each 

model.  Specifically, both models use a reliability threshold of 37 percent as a 

representation of a system level failure.  Additionally, Alley assumes a Weibull 

distribution and parameters to quantify the probability of failure at the component-section 

level of the probabilistic model.  Lastly, the original validation performed by Alley 

assessed the models at only a single Air Force installation.  By addressing these concerns, 

the objective of this research is to further improve civil system reliability estimation for 

Air Force civil engineers. 

Research Objectives and Investigative Questions 

This research investigates the BUILDER® and probabilistic model in order to 

more accurately predict the probability of failure at a building’s system level.  In order to 

accomplish this, this research will focus on reducing the underlying model assumptions 
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and perform further model validation and statistical analysis.  This research will 

accomplish these objectives by answering the following questions: 

1. What assumptions associated with the original research effort can be reduced or 
eliminated through data collection and analysis? 

a) Is the assumption that a reliability threshold of 37 valid for the systems 
analyzed?  If not, does the model indicate a reliability threshold for these 
systems? 

b) Can probabilistic distributions and associated parameters be estimated for 
system components? 

2. After further model validation, do the models still present statistical significance 
for predicting the probability of failure at the system level? 

3. After further model validation, do the models accurately predict the probability of 
failure at the system level? 

4. Can alternative methods be used to assess system reliability for Air Force civil 
infrastructure systems? 

Overview 

This document follows a traditional five chapter thesis format.  Chapter I provides 

the context for this research and the research objectives and question.  Chapter II 

provides a literature review of topics relevant to this research.  Chapter III provides the 

methodology of the research, specifically discussing methods for assessing the 

performance and accuracy of both the Probabilistic Assessment of Failure (PoF) and 

System Condition Index (SCI) models.  Chapter IV discusses the data and data collection 

process and discloses the results of the study.  Finally, Chapter V will present discussion 

of these results, conclusions for Air Force asset management, and recommendations for 

follow on research. 
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II.  Literature Review 

Chapter Overview 

This literature review presents topics pertinent to this research effort.  In order to 

lay the foundational understanding of assessing failure and reliability of building systems, 

this review begins with an understanding of systems.  It subsequently introduces the 

technical civil infrastructure elements and further details how these elements comprise 

civil engineering systems.  This discussion specifically highlights architectural, or 

building, systems as an area of focus.  Next, this literature review explains reliability with 

respect to civil infrastructure systems and further explains how performance is linked to 

reliability.  Additionally, this review introduces how United States Air Force Civil 

Engineers assess reliability through the sustainment management system BUILDER®.  

Finally, the chapter closes with an explanation of the model under consideration, the 

Probabilistic Assessment of Failure (PoF) Model (Alley, 2015). 

Systems Thinking  

For ease of transition through the chapter, and prior to explaining what 

compromises a system, this review will introduce systems thinking.  Systems thinking is 

a tool for understanding or mentally visualizing systems.  Originally, technology and 

technological development focused primarily on the technical artifact.  In contrast to this, 

systems thinking requires a holistic approach to understanding how all components 

within a system interact and work together (Blanchard & Fabrycky, 2011; De Weck, 

Roos, & Magee, 2011; Labi, 2014).  The next two paragraphs introduce the concepts of 

“level of abstraction” and “viewing angle” as tools for holistic understanding of systems. 
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Blanchard and Fabrycky (2011) discuss the utility of a “top-down” approach to 

systems thinking.  In this approach, systems are decomposed in a hierarchical nature.  De 

Weck et al. (2011) discuss the same approach, but build on it by adding that a person can 

and should change their “level of abstraction” when using a top-down approach.  Level of 

abstraction defines at what level of detail a person is analyzing the system.  For example, 

if viewing a system through a microscope, the zoom on the microscope represents the 

level of abstraction.  Zooming out, the system is possibly seen as a large system with 

multiple sub-systems.  Zooming in, system thinking allows for a more detailed view 

limiting the view to a single system or single component therein. 

De Weck et al. (2011) also introduces the concept of changing “viewing angles” 

in systems thinking.  Using the microscope example, if the zoom is the level of 

abstraction, the viewing angle can be thought of as the lens from which the system is 

“viewed”.  In systems thinking, one lens might represent the energy input and output into 

a system, another might represent the economic input and output, and yet another might 

represent the functional output of a system (De Weck et al., 2011).  The intent of thinking 

about systems through multiple lenses is to incorporate a multidisciplinary understanding 

of the system (Blanchard & Fabrycky, 2011; De Weck et al., 2011).  By doing this, one 

gains a broad but detailed understanding of the systems. 

Systems thinking provides a way to think about a system from a holistic 

perspective.  But to what end?  The intent is to provide a framework for holistic 

understanding of a system in order to more effectively manage a system.  The next few 

sections will introduce the characteristics of a system in generic terms and then introduce 

civil infrastructure systems.  The intent is for the reader to understand the complex nature 
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of systems, specifically civil systems, and comprehend the need for systems thinking in 

order to effectively manage those systems.  

Attributes of Systems 

Almost everything in our world is a part of a system and the quantity and types of 

systems are numerous.  Examples of a few types of systems are natural, like the earth’s 

tectonic plates, social, such as the communities in which we live, and technical, like a 

countries electrical system.  But what comprises a system?  Due to the complexity of 

answering this question with respect to the numerous types of systems, this review will 

narrow its focus to technical systems.  Therefore, when using the word system, note that 

this review discusses technical systems only.   

Systems are largely the result of technology and technological advancement.  

Traditionally, the focus of technology was on singular a technical device, or technical 

artifact (Joerges, 1988).   Hughes (1987) describes an artifact as a physical or non-

physical functioning invention.  Emphasizing the words function and singular, a technical 

artifact is a single invention designed to perform a desired function (De Weck et al., 

2011).  As the world’s population grew and humans continued to shape the world in 

which they lived, technical artifacts became prevalent and interconnected (De Weck et 

al., 2011).  These interconnections are what gave birth to the concept of systems.   

The general understanding of a system is defined as a collection of components 

interacting to meet a desired goal (De Weck et al., 2011; Hughes, 1987; Labi, 2014).  

This definition implies at least three requirements of a system: components, interactions, 

and a purpose.  Labi (2014) incorporates these three requirements of a system and also 
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includes individual component roles, governing rules and procedures, system structure, 

system boundary, and surrounding environment.   De Weck et al. (2011) further expands 

the requirements for systems by concluding that systems are dynamic and change over 

time.  Hughes (1987) adds that human interaction plays a crucial role in the creation and 

feedback loop of the system.  Additionally, systems require resources in order to achieve 

the specified system objective.  Given the commonalities that appear when defining a 

system, the attributes of a system include: objective, resources, rules and procedures, 

components and their roles, component interactions, system structure, system boundary, 

surrounding environment, dynamic, human interaction.  Understanding general systems 

concepts will aid in the understanding of civil systems in addition to the BUILDER® and 

PoF model discussed later, therefore Table 1 and Table 2 further explain the common 

system attributes listed above. 

 

 

Figure 1: System Attributes 
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Table 1: System Attributes 

Objective 
Systems and their components are the product of human intervention and are 
constructed or procured for a purpose (De Weck et al., 2011).  In an organizational 
context, the system's purpose is often aligned with the objectives of the organization or 
system owner (Labi, 2014).  Sage and Armstrong (2000) classify systems into three 
functional objective categories: service-oriented, product-oriented, and process-
oriented.  De Weck et al. (2011) expands on the process of systems.  System processes 
are divided into five categories of objectives: transform, transport, store, exchange, and 
control. 
Resources 
A system requires resources to perform its intended function (Hughes, 1987).  
Resources can come in the form of energy, material, finances, labor, time, etc.  Thus, 
system output is the product of all of its resource input.  System components can also 
receive input and produce output.  The output of one component may become the input 
of another.  These input/output linkages help define component interactions (Hughes, 
1987). 
Components 
Components are the foundation on which the system is constructed (De Weck et al., 
2011).  Components can be physical or non-physical.  A physical component might be a 
transformer in an electrical distribution system while a non-physical component might 
be a regulatory law under which the transformer or distribution system must operate 
(Hughes, 1987).  Similar to the overall system objective, each component performs a 
specific function within the system and requires resources in order to aid in achieving 
the system objective. 
Component Interactions 
Component interactions transform a collection of individual components into an 
interrelated system with an overarching objective.  To achieve this objective, 
components trade inputs and outputs with one another (Labi, 2014).  This trading of 
inputs and outputs is component interaction.  These interactions can be both positive 
and negative in nature and become more complex as thy system grows (Joerges, 1988).  
Identifying which components interact and the nature of their interaction defines the 
system structure (Hughes, 1987).  
System Structure 
Systems are often decomposed into some sort of structure (hierarchical, distributed, 
network, etc.).  The purpose for decomposing systems into a structure is to better 
understand the individual components and how they interact with other components in 
the system (De Weck et al., 2011; Labi, 2014; Sage & Armstrong, 2000).  De Weck et 
al. (2011) posit that engineering systems require at least 4 levels of decomposition to aid 
in comprehending the component interactions.  They also argue that the need for 
decomposed structuring rests on the human brains capacity for processing information. 
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Table 2: System Attributes Continued 

System Boundary 
The system boundary is meant to delineate elements or components that are internal to 
the system from those that are external to the system (Labi, 2014).  De Weck et al. (2011) 
offer two ways of understanding the system boundary.  First, the space comprised of 
elements in direct control of the system owners.  Second, the space that includes elements 
that may be directly or indirectly affected by the system.  The latter being the more 
comprehensive captures all interactions of a system and accounts for externalities.  
Understanding the system boundary provides a clear line of delineation between all the 
components that comprise a system and the system’s external environment. 
Surrounding Environment 
The surrounding environment is defined as the space outside the system boundary, this 
includes elements that are complimentary to the system (Labi, 2014).  Hughes (1987) 
further explains “complimentary to the system” elements external to the system that have 
a “one-way relationship” with the system.  The system may either influence the 
environment or be influenced by the environment.  However, elements in the 
environment are not treated as system components because there is no interaction with 
system components (Hughes, 1987). 
Dynamic 
Systems are not static as they change with time (De Weck et al., 2011; Labi, 2014; Sage 
& Armstrong, 2000).  Changes in state or condition can be understood as either discrete 
or continuous (De Weck et al., 2011).  In addition to conditional changes over time, 
systems also evolve and grow.  As technology advances systems advance and change.  
Sometimes subsystems or components can change at different rates than other parts of the 
system, increasing the complexity of understanding the system (Blanchard & Fabrycky, 
2011) 
Rules and Procedures 
Simply stated, these are the governing procedures that determine how the system can be 
operated (Labi, 2014).  Rules and procedures provide the physical and regulatory context 
in which the system may operate. 
Human Interaction 
Human interaction plays a major part in systems.  Systems are constructed or procured by 
humans to perform some function.  The system exists solely as a result of human 
intervention (De Weck et al., 2011).  Humans are also responsible for maintaining, 
evolving, and operating systems.  Additionally, humans perform the important role of 
completing the feedback loop for system performance and are the link between assessing 
system performance against system goals and correcting system errors (Hughes, 1987). 
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Civil Infrastructure Systems 

This review has now presented information with respect to systems in general.  

Because this research focuses solely on civil infrastructure systems, it is important for 

this review to introduce the major civil systems and explain how the generic systems 

information presented above is applicable when discussing civil infrastructure systems. 

Labi (2014) highlights nine major technical areas within civil engineering: 

structural, transportation, hydraulic, environmental, geotechnical, construction, geomatic, 

civil materials, and architectural.  Grigg et al. (2001) highlights two additional technical 

areas: emergency management and systems engineering.  These technical areas represent 

areas of focus and technical expertise with civil engineering.  In a similar fashion to the 

evolution from technical artifacts to systems, some of the technical areas identified by 

Labi (2014) and Grigg et al. (2001) now form the major civil systems seen today.  These 

systems are highly interactive with each other (Little, 2002), as depicted in Figure 2, and 

are often comprised of multiple sub-systems (Labi, 2014).  Given their interactive and 

complex nature, it is necessary to view civil infrastructure as systems.  Little (2002) 

identifies four major civil systems: transportation, energy (electrical power, oil, and 

natural gas), water, and telecommunications systems.  Grigg et al. (2001) and Labi (2014) 

identify additional civil systems: geotechnical, structural, environmental and architectural 

systems. 
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Figure 2: Civil Infrastructure Systems (Little, 2002) 

 

Aside from the fact that literature identifies the majority of civil technical areas as 

civil systems, literature also shows that the composition of civil systems is in agreement 

with traditional systems literature.  Just as all systems are comprised of multiple 

components working together to perform a desired objective, civil systems have the same 

composition.  For example, bridges or other structures are composed of multiple 

structural elements.  These elements have a specific arrangement and specific individual 

functions; i.e. support in tension, support in compression, spanning, or cantilevering.  

Each member’s individual function coupled with the relationship with other members 

determine the overall system structure and its ability to perform the desired objective 

(Ambrose, 1967).  Bridges and structures also age with time and require maintenance, 

which is performed and governed by some human entity.  Revisiting the requirements to 
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be called a system, this simple example illustrates the concepts of system components, 

interactions, system and component objectives, structure, dynamic nature, rules and 

procedures, and human interaction (De Weck et al., 2011; Hughes, 1987; Labi, 2014; 

Sage & Armstrong, 2000).  Additionally, applying De Weck’s (2011) concept of level of 

abstraction, one can “zoom” away from this bridge and see it as a component within a 

larger transportation system.  The bridge as a system has its own physical boundary and 

surrounding environment, satisfying the last two requirements for classification as a 

system (De Weck et al., 2011; Hughes, 1987; Labi, 2014).   

Although the above example is simplistic, it displays the transformation from 

thinking about physical structures as civil artifacts to components within civil system, or 

as civil systems themselves.  Once engineers think about civil infrastructure as civil 

systems, they can begin to apply the systems thinking concepts outlined by De Weck et 

al. (2011).  Applying these concepts will aid engineers and infrastructure managers in the 

design and management of civil infrastructure systems. 

Labi (2014) categorizes the majority, if not all, of civil infrastructure into their 

individual systems.  Kandiah and Rao (2008) discuss the evolution of civil water 

infrastructure from artifacts into systems and then into complex interdependent systems.  

Heller (2001) also discusses the interdependencies in many civil systems and identifies 

power generation and distribution systems, transportation systems, and 

telecommunication systems as complex and adaptive systems.  Lastly, and arguably most 

applicable to this research, is the introduction of building or architectural systems (Labi, 

2014; Piper, 2004; Rush, 1986).  These systems are the built infrastructure, or facilities, 

in which society lives and operates.  While architectural systems are systems in their own 
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right, they are more accurately described as a system with multiple sub-systems.  The 

following section provides further understanding of architectural system composition. 

Architectural (Building) Systems 

The primary focus of this research is to understand reliability of certain systems 

within architectural systems.  Therefore, it is necessary to understand what different 

systems make up Architectural systems.  Architectural systems are described as the built 

infrastructure in which society lives and works.  These buildings can be simple structures 

comprised of only two or three systems or can be a very complex with many sub-systems.  

Rush (1986) classifies four distinct systems within the architectural system framework: 

building envelope, structural, mechanical, and interior systems.  Bachman (2003) 

replaces the mechanical system classification with service systems and introduces the 

exterior site as a system.  Benggeli (2003) and Piper (2004) follow similar system 

characterization, however both decompose mechanical systems into the common systems 

in this category: heating ventilation air conditioning (HVAC), fire protection, electrical, 

plumbing, and conveyance systems separately.  The following sections offer a brief 

explanation of the five major systems that comprise architectural systems. 

Structural. 

The structural system in a building consists of any members that are responsible 

for maintaining static equilibrium from static or dynamic loading (Bachman, 2003; Rush, 

1986).  Components of a structural system are load bearing walls, columns, beams, 

foundations, and the like. 
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Envelope. 

The envelope system is responsible for limiting the interaction of the interior 

systems and the building’s external environment.  The envelope primarily consists of 

walls, fenestrations (windows and doors), roofs, and insulation (Bachman, 2003; 

Sadineni, Madala, & Boehm, 2011). 

Interior. 

One can think of interior systems as anything visible from the inside a building.  

These include partitions and their coverings, floor coverings, ceilings, interior 

fenestrations, and fixtures.  The interior system is typically interdependent with the 

envelope system (Binggeli, 2003; Piper, 2004; Rush, 1986). 

Services. 

The services systems provide services to the facility or occupants within the 

facility.  The major systems found in this category are: HVAC, power distribution, water 

distribution, and waste.  These systems are responsible for regulating heat transfer, safely 

distributing electricity and lighting, providing potable water, and removing waste from a 

building, respectively. This category also includes conveyance systems responsible for 

transporting people and products within a building (i.e. elevators and escalators).  Lastly, 

services systems include life safety systems such as fire protection, security and control 

systems (Bachman, 2003; Rush, 1986). 

Site. 

The site consists of any natural or constructed elements that are part of, but 

external to, the building system.  Elements such as vegetation, landscaping, sidewalks, 

parking areas, and drainage compose the site system (Bachman, 2003; Piper, 2004). 
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A building may contain all or only a few of these described systems.  Backman 

(2003), Binggeli (2003), Piper (2004), and Rush (1986) all highlight the hierarchical 

nature of their relationship to the building system as a whole.  In a similar fashion, each 

system is comprised of numerous components arranged in the same hierarchical 

structure; and these components work together to achieve the overall system objective.  

Just as system components work together, each system works toward the building system 

objective, often in an integrated nature.  Rush (1986) highlights five levels of system 

integration: remote, touching, connected, meshed, and unified.  Remote systems share no 

connection, physical or otherwise.  Touching indicates contact between two systems 

without permanent attachment while connected systems are permanently attached.  

Meshed systems occupy the same space but may or may not be connected.  Finally, 

unified systems are integrated to the point that the separate systems are no longer distinct 

from one another (Rush, 1986).  The level of integration will vary from building system, 

however it is arguable that the majority of building systems are at a minimum touching or 

meshed. 

With numerous possible combinations of systems and many possible levels of 

integration within architectural systems, it is easy to see that architectural systems are 

complex.  Engineers and facility managers must use concepts described in systems 

thinking to visualize and understand how these systems work and interact with the intent 

to more effectively manage these systems.  The following sections explain how 

understanding reliability, failure, and performance are used to manage complex 

architectural systems. 
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Reliability 

The content presented when explaining systems and civil engineering systems 

highlights that systems have some inherent purpose or objective.  Systems are 

constructed to achieve something and all systems are susceptible to failing to meet their 

objectives.  Reliability is the the measurement of how likely a system is to meet its 

objectives.  Ang and Tang (1984) discuss the importance of understanding the the 

reliability of a civil system throughout its lifetime.  Understanding a system’s reliability 

allows engineers to better design and manage the system.  Equation 2 presents reliability 

is the mathematical compliment of the probability of failure.  Basic definitions state that 

reliability is the ability of a system to perform a desired function, however, a critical 

component of reliability in civil systems is understanding its relationship with uncertainty 

(Ang & Tang, 1984; Labi, 2014; Singh, Jain, & Tyagi, 2007). 

 ௙ܲሺݐሻ ൌ ܲሺܶ ൑  ሻ (1)ݐ
  
 ܴሺݐሻ ൌ 1 െ ܲሺܶ ൑ ሻݐ ൌ ܲሺܶ ൐  ሻ (2)ݐ
  

Literature on reliability in civil infrastructure shows that reliability evaluation has 

changed over the years as engineers seek to quantify the level of uncertainty in civil 

systems.  Traditionally, reliability was assessed through deterministic means (Ang & 

Tang, 1984; Singh et al., 2007).  In a deterministic analysis, engineers quantified the 

capacity of the system or components therein.  Engineers would then quantify the “worst 

case” load combination.  Given certain factors of safety, if the system capacity was 

greater then the worst case load the system was deemed reliable (Singh et al., 2007).  The 

primary weakness of this assessment technique is the failure to include uncertainty. 
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In contrast, a probabilistic analysis of reliability attempts to understand the 

uncertainty associated with both loads and system capacity.  Probabilistic methods 

quantify the different load and capacity possibilities and their respective probabilities.  

From there, system reliability becomes the probability that the system capacity is greater 

than the load placed on the system.  Figure 3, depicts this relationship.  The overlap of the 

two probability distributions represents the probability of failure.  The remaining area 

under the strength density function, ܵ̅, represents the overall system reliability (Ang & 

Tang, 1984; Labi, 2014; Singh et al., 2007). 

 

Figure 3: Load-Strength Reliability (“Introduction to Reliability Engineering,” 2015) 

 

It is also important to note that assessing reliability of system can vary depending 

on the operational requirements, operating environment and the individual assessing 

reliability (Dummer & Winton, R.C., 1986; Labi, 2014).  More specifically, Labi (2014) 



 

21 

discusses how system reliability is dependent upon the criterion being assessed.  For 

example, the reliability of a concrete column with respect to compressive strengths will 

be different than reliability for shear cracking or corrosion.  Therefore reliability 

assessments must be paired with a performance criterion or failure modes.  To indicate 

this, a new equation for reliability is presented with a subscript “c” in equation 3 to 

represent reliability in terms of a specific criterion (Labi, 2014). 

 ܴ௖ሺݐሻ ൌ 1 െ ܲሺܶ ൑ ሻݐ ൌ ܲሺܶ ൐  ሻ (3)ݐ
  

Reliability as a Performance Measurement 

Stating that an asset has failed typically indicates that the asset is no longer 

performing the desired function at some desired specification.  Performance with respect 

to infrastructure is defined as “the accomplishment of a task set for the system or its parts 

by the society that builds, operates, or uses that infrastructure” (National Research 

Council, 1996, p. 33).  This definition implies that infrastructure is built to meet societal 

or organizational objectives.  These needs and objectives can range in complexity and 

vary greatly (National Research Council, 1996).  Additionally, large organizations 

typically contain numerous stakeholders with varying positions, needs, and individual 

objectives.  

Performance indicators that meet the broad objectives of numerous stakeholders 

are lumped into multiple categories.  The National Research Council (1996) outlines 

three major categories: effectiveness, reliability, and financial performance.   Similarly, 

Levy et al. (2010) identify three categories associated with infrastructure performance: 

financial, physical, and functional.  These different categorizations effectively cover an 
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assets financial performance, capability to perform its intended function, and reliability 

with respect to performing its intended function.  Therefore, large organizations can use 

reliability as a performance measure when trying to evaluate the objectives of numerous 

stakeholders. 

Air Force Infrastructure Performance Measurement 

To improve Infrastructure Asset Management within the Air Force, civil 

engineers have identified ten metrics and key performance indicators (KPIs) for 

assessment.  These indicators focus primarily on financial performance with respect to 

the amount of resources required to maintain a facility or system.  The primary focus of 

these indicators is measuring cost of preventive maintenance (PM), corrective 

maintenance (CM), labor hours and work responsiveness (United States Air Force, 2015).  

However, data against these KPIs are not frequently captured for Air Force facilities 

therefore cannot provide a comprehensive understanding of asset performance.  In an 

attempt to quantify asset performance, the Air Force has implemented the use of 

BUILDER® and currently collects physical condition data on a five year cycle.  With the 

adoption of BUILDER®, engineers have attempted to equate annual condition indices to 

a proportional measure of asset reliability, as discussed in Grussing et al. (2006).   

Literature shows that reliability can be used to assess asset performance (Lavy et 

al., 2010; National Research Council, 1996).  With the implementation of BUILDER®, 

the Air Force has begun to assess the performance of civil infrastructure via asset 

condition and use asset condition as a proxy measure of reliability.  As with any 

performance objective, an organization must determine the desirable range before 
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performance assessment can begin.  With respect to asset condition, the Air Force has 

accepted the minimum threshold for condition at a CI = 37, consistent with the terminal 

value for failure defined in BUILDER® (Grussing, M. N., 2015).  The Air Force is now 

prepared to use calculated CIs to assess asset performance and prioritize resource 

allocations for civil infrastructure. 

It is worth noting that KPIs and CI appear to focus primarily on the financial 

aspects associated with an asset.  The KPIs outlined in the AF CE Operations 

Engineering Playbook (United States Air Force, 2015) focus primarily on an assets 

financial performance while condition indices attempt to connect asset condition to 

reliability.  However, condition is better suited to capture an asset’s degradation and 

quantify the financial requirement required to return an asset to near perfect condition.  

What remains to be shown is if asset condition is truly an accurate proxy measure for 

asset reliability. 

BUILDER® 

BUILDER® is a Sustainment Management System (SMS) developed by the 

United States Army Corps of Engineers.  A primary function of this system is to track 

asset inventory and monitor asset condition.  BUILDER® also provides asset managers 

with the ability to configure standards, policies, prioritizations and funding to generate 

work (United States ARMY Corps of Engineers (USACE), 2015c).  Because these 

secondary functions are outside the scope of this research, these topics will not be 

discussed and this literature review will focus primarily on asset condition assessment 

and Condition Index calculations. 
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BUILDER® Hierarchy. 

BUILDER® permits asset managers to construct a comprehensive asset portfolio 

where they can analyze life-cycle performance at various levels of infrastructure systems.  

BUILDER® uses the UNIFORMAT II (U2) format to compose the hierarchy associated 

with infrastructure assets(U.S. Army ERDC/CERL, 2007a).  The hierarchy begins with 

the creation of sites, or geographical regions.  Each site is populated with one or more 

“buildings”, which represent individual facilities in the portfolio.  BUILDER® allows for 

further decomposition from the building level to the system, component, component-

section, and sub-component levels.  A depiction of this relationship is displayed in Figure 

4.  Users may select from 12 systems when using BUILDER®(U.S. Army ERDC/CERL, 

2007a), as seen in Table 3.  Not all systems are present in every facility and a facility may 

only possess one of each type of system. 

Decomposing systems requires the identification of individual components.  Each 

system possesses a standard list of components that data managers must select from to 

populate the system.  Continuing down the facility hierarchy, BUILDER® manages data 

and calculates foundational condition indices at the component-section level (U.S. Army 

ERDC/CERL, 2007a).  While component-sections can be broken down into sub-

components for condition information purposes, decomposition of assets primarily stops 

at the component-section level. 
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Figure 4: Building Hierarchy (Uzarski & Grussing, 2006) 

 

Table 3: Building Systems (U.S. Army ERDC/CERL, 2007b) 

BUILDER®  UNIFORMAT II 
Conveying  A10 Foundations D50 Electrical 
Electrical  A20 Basement Construction E10 Equipment 
Exterior Circulation  B10 Superstructure E20 Furnishings 
Exterior Closure  B20 Exterior Enclosure F10 Special Construction
Fire Suppression  B30 Roofing  
HVAC  C10 Interior Construction  
Interior Construction  C20 Staircases  
Plumbing  C30 interior Finishes  
Roofing  D10 Conveying  
Site  D20 Plumbing  
Specialties  D30 HVAC  
Structural  D40 Fire Protection  
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Data Input: BUILDER® Surveys. 

The foundation of asset life-cycle analysis is the data collected and input into 

BUILDER®.  Once data managers have established the necessary hierarchy for an asset 

down to the component-section level, associated data is then put into the system.  

Condition data is collected from two types of surveys: direct rating and distress based 

surveys.  Distressed based surveys are an in-depth process that identifies the type, 

quantity, and severity of distress for a particular sub-component (Uzarski & Grussing, 

2006).  BUILDER® uses this distress data to calculate a deduct value and an associated 

subcomponent condition index (CI).  BUILDER® then calculates component-section CIs 

(CSCI) by weighting individual subcomponent CIs (U.S. Army ERDC/CERL, 2007a).   

As a note, both survey types contain some subjectivity because neither is intended 

to be a detailed engineering analysis.  However, direct rating surveys are less qualitative 

and consequently more subjective.  Direct rating surveys assign a rating of Green, 

Amber, or Red to a given component-section.  These ratings represent a sliding scale of 

serviceability loss due to degradation.  Green represents the positive end of the spectrum 

implying minor, if any, serviceability loss while Red represents a serious loss of 

serviceability.  Amber represents the stages between Green and Red, and indicates that 

some serviceability loss is present and further analysis, or a distressed based survey, is 

warranted (Uzarski & Grussing, 2006).  Each rating can also be assigned a (+) or (-) 

value, therefore a direct rating survey results in a component-section receiving one of 

nine possible ratings as seen in Table 4.  Similar to distress based surveys, BUILDER® 

uses the results of the direct rating survey to calculate a component-section deduct value 

and subsequent CSCI. 
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Once condition data is input against a component-section and BUILDER® 

calculates a CSCI, higher-level CIs can then be calculated.  BUILDER® calculates a 

particular level CI using the average of the lower level CI weighted by its cost of 

replacement (U.S. Army ERDC/CERL, 2007a).  Equations 4-6 depict this process 

starting at the component-section level and terminating at the building level where BCCI 

is the building-component CI, SCI is the system component CI, and BCI is the building 

CI. 

ܫܥܤ  ൌ
∑ሺௌ஼ூ ௫ ூ௡ௗ௜௩௜ௗ௨௔௟ ݉݁ݐݏݕܵ ஼ோ௏ሻ

∑ௌ௬௦௧௘௠ ஼ோ௏
 (4) 

  

ܫܥܵ   ൌ
∑ሺ஻஼஼ூ ௫ ூ௡ௗ௜௩௜ௗ௨௔௟ ஼௢௠௣௢௡௘௡௧ ஼ோ௏ሻ

∑஼௢௠௣௢௡௘௡௧ ஼ோ௏
 (5) 

  

ܫܥܥܤ   ൌ
∑ሺ஼ௌ஼ூ ௫ ூ௡ௗ௜௩௜ௗ௨௔௟ ௌ௘௖௧௜௢௡ ஼ோ௏ሻ

∑ௌ௘௖௧௜௢௡ ஼ோ௏
 (6) 

  
 

Data Output: Condition Index. 

BUILDER® uses survey data to calculate a Component-Section Condition Index 

(CSCI) for each component and uses the roll-up process depicted in equations 4-6 to 

calculate higher-level CI values.  Condition Index is a numeric value from 0-100 that is 

equated to being proportionate with reliability (Grussing et al., 2006), and subsequently 

the probability of failure for a given system or component therein.  A CI of 100 

represents a perfectly reliable asset displaying no aspects of failure.  Perfect reliability is 

typically only found at time zero (time of installation) for a given component.  A decrease 

in CI, ultimately terminating at a CI of 0, represents the decrease in ability of an asset to 

perform its intended function (Grussing et al., 2006).  The current CI failure threshold is 
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represented by CI values less than or equal to 37, representing an unacceptable loss of 

asset functional ability (Grussing et al., 2006). 

 

Table 4: Direct Survey Rating Criteria (United States ARMY Corps of Engineers 
(USACE), 2015b; Uzarski & Grussing, 2006) 

Rating Rating Definition 
100 Green (+) Entire component-section is free of observable or known distress 

99-93 Green 

No component-section serviceability or reliability reduction.  Some, 
but not all, non-critical subcomponents may suffer from slight 
degradation or few critical subcomponents may suffer from slight 
degradation 

92-86 Green (-) 

Slight or no component-section serviceability or reliability 
reduction.  Some, but not all, non-critical subcomponents may suffer 
from slight degradation or more than one critical subcomponents 
may suffer from slight degradation 

85-75 Amber (+) 

Component-section serviceability or reliability is degraded, but 
adequate.  A very few, critical subcomponents may suffer from 
moderate deterioration with perhaps a few non-critical 
subcomponents suffering from severe deterioration. 

74-65 Amber 

Component-section serviceability or reliability is definitely 
impaired. Some, but not a majority, critical subcomponents may 
suffer from moderate deterioration with perhaps a few non-critical 
subcomponents suffering from severe deterioration. 

64-56 Amber (-) 

Component-section has significant serviceability or reliability loss. 
Most subcomponents may suffer from moderate degradation or a 
few critical subcomponents may suffer from severe degradation. 

55-37 Red (+) 

Significant serviceability or reliability reduction in component-
section.  A majority of subcomponents are severely degraded and 
others may have varying degrees of degradation. 

36-11 Red 

Sever serviceability or reliability reduction to the component-section 
such that it is barely able to perform.  Most subcomponents are 
severely degraded. 

10-0 Red (-) 

Overall component-section degradation is total.  Few, if any, 
subcomponents salvageable.  Complete loss of component-section 
serviceably. 
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In addition to providing current CI values, BUILDER® possesses the capability 

to forecast condition trends over the life cycle of an asset.  This forecasting capability 

aids asset managers with the ability to estimate an asset’s condition at a future date and 

plan reinvestment strategies.  BUILDER® uses a Weibull cumulative probability 

distribution function, Equation 7, to calculate CI at future time, t 

ሻݐሺܫܥ  ൌ ܽ ൈ ݁
ିቀ೟

ഁ
ቁ
ഀ

 
(7) 

  
where ܽ is the initial steady state component-section index with possible values ranging 

from 0 to 100,  is the service life adjustment factor (scale parameter), and  is the 

deterioration factor (shape parameter). 

BUILDER® defines β as the service life adjustment factor.  The traditional 

Weibull nomenclature defines β as the equations scale parameter.  Increasing this factor 

will increase the scale, or range, of the CI curve.  BUILDER® defines α as the 

deterioration factor.  More specifically, Weibull defines α as the shape or slope 

parameter.  α directly defines the slope at which the curve deteriorates.  Increases in α 

indicate and increases slope or rate of deterioration. 

Equation 7 represents the CI distribution for a given component-section.  At time 

of installation, distribution parameters are estimated using industry standard or the 

manufacturer supplied service life.  However, factors such as the environment and 

maintenance rates can cause an assets actual performance to differ from the projected CI 

curve.  Once a component-section has survey data populated against it, BUILDER® uses 

this data and a regression model to minimize the sum of squares residual errors to best fit 

a new CI curve (Grussing et al., 2006).  The model also uses weights for each data point 
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collected, assigning and increasing weights based on the certainty of the information (i.e. 

estimated versus actual), the type of inspection, how recent the data is, and the change in 

CI from the last inspection.  This data and regression model ultimately best fit a new 

curve and with updated β and α parameters.   

Probabilistic Assessment of Failure 

In a previous study of the  BUILDER® model, Alley (2015) proposes an alternate 

model for computing the probability of failure at the system level.  In contrast to the use 

of replacement costs, Alley uses fault trees with fuzzy logic combined with importance 

weighting to calculate the probability of failure at the component-section level.  She then 

uses the same method to calculate the probability of failure at higher levels.  Basic fault 

trees use AND and OR operators to calculate statistical probabilities.  These basic 

probability equations can be found in Equations 8 and 9 (Alley, 2015).  

  ௙ܲሺܣ	AND	ܤሻ ൌ ௙ܲሺܣ ∩ ሻܤ ൌ ௙ܲሺܣሻ ൈ ௙ܲሺܤሻ (8) 
  
 ௙ܲሺA	OR	Bሻ ൌ ௙ܲሺܣ ∪ ሻܤ ൌ ௙ܲሺܣሻ ൅ ሺܤሻ െ ௙ܲሺܣሻ ൈ ௙ܲሺܤሻ (9) 
  

Fault trees with fuzzy logic use Order Weighted Averages (OWA) to adjust the 

degree to which an operator represents an OR or an AND gate.  That is to say, OWA 

replaces traditional OR and AND gates with a new operator that lies somewhere between 

a true OR or AND gate.  OWA uses a weight vector, W, and a probability vector, B.  

These two vectors are multiplied together to calculate a scalar, ORAND operator (Alley, 

2015).  This methodology uses the ORAND operator to calculate the probability of 

failure at time, t, for a given component and system.   
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Equation 10 calculates the probability vector, B, for a given component-section.  

This equation represents a Weibull cumulative probability distribution, where A is an 

asset’s initial condition index at time of installation.  CIf is the condition index threshold 

for failure, set at CIf  = 37.  t, is time in years represented as a percentage of the assets 

expected service life.   is the Weibull scale parameter, and  is the Weibull shape 

parameter.  In the construction of this model, Alley assumes a  = 1 and an  of 2.64 

(Alley, 2015).   

 ௙ܲ ൌ 1 െ ቎ܣ ൈ ൤ ଵ

஼ூ೑
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The weight vector, W, for each component and component-section is determined 

using their respective importance indicators.  As previously stated, these vectors are then 

multiplied together to compute a scalar, component level, ORAND operator.  This 

process is repeated once more to compute the probability of failure at the system level.  

While this communicates a cursory explanation of how the probabilistic model uses 

OWA, Chapter III will provide a detailed explanation of these calculations. 

After constructing the PoF model, Alley validates the model through work order 

(WO) data contained in the Interim Work Information Management System (IWIMS) 

database.  Alley collects failure data founded on the assumption that a WO coded with 

work order indicator (WOIND) J and type of service (TYPESVS) of emergency (E) or 

urgent (U) combined with a title indicating system level failure point toward a system 

failure as these actions are not planned or preventive in nature, but reactive and corrective 

to a failed system (Alley, 2015).  Examples of WOs meeting these criteria in the 

Electrical and HVAC systems are shown in Table 5. 
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Once the failed systems are identified, Alley extracts facility data from 

BUILDER® to determine the average component-section age.  The average age extracted 

from BUIDER® is then input into Equation 10 to calculate the probability of failure 

associated with that particular component-section.  Each component-section probability 

of failure represents a single value in the B vector.  Alley then uses OWA and sub-

component importance, the W vector, to “roll” the probability of failure up to the 

component level.  The OWA method is repeated until the model computes a system level 

probability of failure.  This probability is then compared to the System Condition Index 

(SCI) calculated by BUILDER® (Alley, 2015). 

 

Table 5: Work Order Failure Examples (Alley, 2015) 

Electrical System 
FAC# WOTITLE DATE TYPESVS WOIND 
525 POWER LOSS 141114 U J 
763 NO POWER 140923 E J 
1544 EMERGENCY LIGHTS/ NO POWER 140127 U J 
1639 NO POWER 141014 U J 
5500 NO POWER 141006 U J 
6510 POWER OUTAGE 140423 E J 
7011 LOSS OF POWER 131230 E J 
8500 LOST ELECTRICAL POWER 140703 U J 
HVAC System 
FAC# WOTITLE DATE TYPESVS WOIND 
7011 A/C NOT WORKING 140312 U J 
7015 A/C UNIT STOPPED WORKING 140825 E J 
7025 HVAC IS DOWN 140818 E J 
8195 HVAC UNIT DOWN 141110 E J 
8500 REPAIR A/C UNITS INOP 140916 U J 
10130 HVAC NOT WORKING 130925 U J 
10660 HVAC NOT WORKING 140206 U J 
12000 REPAIR INOP. HVAC 140728 U J 
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Once values using the Probabilistic Assessment of Failure model are calculated 

and SCI values extracted from BUILDER®, Alley uses contingency analysis to both 

compare the models to one another and determine which model possesses more 

predictive capability.  To do this, Alley creates two population samples.  The first 

population sample, categorized as the failed sample, is created using the previously 

mentioned assumption of failure associated with IWIMS work orders.  Facilities with 

WOs meeting the requirements for system failure are placed in the failed sample, size n.  

A second, non-failed population consists of any remaining facilities not meeting the 

prerequisites for failure.  From this non-failed population, Alley selects a random sample 

of size n (Alley, 2015). 

With a failed and non-failed sample, Alley determined that both models predicted 

similar results in 10 out of 46 component-sections analyzed.  Each model is also analyzed 

to determine its predictive capability of system level failure. Figure 5 and Figure 6 

display the results of the contingency analysis for each model.  Still using contingency 

analysis, Alley found that the BUILDER® model possessed little to no predictive ability 

while her model was able to accurately predict probability of failure with a statistical 

significance of 0.12 (Alley, 2015). 

 

Truth 

Observed Fail No Fail Row Total 
Fail 6 17 23 
No Fail 2 21 23 
Column Total 8 38 46 

Test  ChiSquare  Prob>ChiSq 
Likelihood Ratio 2.515  0.1128 
Pearson  2.421  0.1197 

Figure 5: PoF vs Truth Contingency Analysis (Alley, 2015) 
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Truth 

Observed Fail No Fail Row Total 
Fail 2 21 23 
No Fail 2 21 23 
Column Total 4 42 46 

Test  ChiSquare  Prob>ChiSq 
Likelihood Ratio 0.000  1.000 
Pearson  0.000  1.000 

Figure 6: SCI vs Truth Contingency Analysis (Alley, 2015) 

 

Summary 

This chapter presented a literature review of topics relevant to this research.  The 

chapter provided an overview of systems literature, civil infrastructure systems and 

architectural systems. Additionally, system reliability was presented and how it relates to 

failure and performance.  Finally, this chapter presented both the BUILDER® SCI model 

and the Probabilistic Assessment of Failure model.  The following chapter will further 

detail the methodology of the Probabilistic Assessment of Failure model and explain 

additional methodology associated with this research.  
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III.  Methodology 

Chapter Overview 

This chapter presents the methodology associated with this research.  The chapter 

begins by explaining the calculations behind the Probabilistic Assessment of Failure 

(PoF) model developed by Alley (2015).  Next, this chapter presents the method for 

assessing the both the PoF and BUILDER® model performance through the use of the 

Fisher’s Exact Test and Odds Ratios.  The chapter concludes by presenting the method 

for assessing the accuracy of both models through a comparison of reliability calculated 

via a Nonhomogeneous Poisson Process (NHPP) Availability Growth Model (AGM). 

Probabilistic Assessment of Failure (PoF) Model 

Fault Trees with Fuzzy Logic 

Traditional fault trees calculate the probability of events via traditional AND and 

OR gates.  The AND gate requires that all basic events in a Fault Tree occur before a 

higher-level event occurs.  In contrast, the OR gate requires only one basic event occur in 

order to trigger a higher-level event.  Ross (1996) discusses the restrictive nature of 

boolean style gates and proposes that basic events truly lie somewhere between a true 

AND gate and a true OR gate.  Ross proposes the use of Ordered Weighted Averaging to 

construct logic gates that are not entirely AND or OR in nature (Ross, 1996). 

Ordered Weighted Averaging (OWA) 

Ordered Weighted Averaging (OWA) has it roots in multi-criteria decision 

analysis.  Modelers used the process to determine to what degree a proposed alternative, 

X, satisfied a desired criteria (Yager, 1988).  In the context of this research, OWA in 
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conjunction with fault trees will determine to what extent, or the likelihood, a system will 

fail. This research will validate the results using a determined  “failed” state as defined by 

Alley (2015). 

In conjunction with Fault Trees, this research uses OWA to calculate an aggregate 

operator that lies somewhere between a true AND gate and true OR gate.  When referring 

to the aggregate operator, this research uses the term ORAND operator.  The ORAND 

operator requires the construction of two vectors.  The first of which is a weighting 

vector, W, where wi  (0,1) and Wi = 1.  The second vector, B, is the ordered argument 

vector representing failure probabilities for each component or component-section, 

depending on what level in the system hierarchy the vector represents.  Where bi  [0,1] 

and all bi are ordered in descending order. 

 ௜ܹ ൌ ሾݓଵ ଶݓ ଷሿݓ (11) 
  

௜ܤ  ൌ ൥
ܾଵ
ܾଶ
ܾଷ
൩ (12) 

  
Yager (1988) emphasizes that the B vector must be ordered when applying OWA.  

OWA differs from simple weighted averaging in that weights are not associated with 

particular attributes but with respect to an ordered position (Yager, 1988).  In other 

words, Wi is associated with the ith largest argument in the B vector. 
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Weighted Average 
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Ordered Weighted Average 
Where B is ordered in descending order 
 

FሺBሻ ൌ WB ൌ ሾwଵ,… ,w୬ሿ ൥
bଵ
⋮
b୬
൩ 

 

Figure 7: Weighted Average vs. OWA 

 

After populating the W and B vectors, this method computes the ORAND 

operator by multiplying the two vectors together.  Letting F(B) be a resulting ORAND 

operator, the following example illustrates the ORAND calculation.  Given the W vector, 

this example will calculate F(0.6, 1.0, 0.7). 

 

W ൌ ൥
0.3
0.4
0.3

൩ B ൌ ൥
1.0
0.7
0.6

൩ FሺBሻ ൌ WᇱB ൌ ሾ0.3,0.4,0.3ሿ ൥
1.0
0.7
0.6

൩ 

FሺBሻ ൌ ሺ0.3ሻሺ1.0ሻ ൅ ሺ0.4ሻሺ0.7ሻ ൅ ሺ0.3ሻሺ0.6ሻ ൌ 0.76 

Figure 8: Example of ORAND operator calculation 

 

This operator combines 30% of a pure or gate (the maximum basic event of 1.0), 

30% of a pure and gate (the minimum basic event of 0.6) and 40% from the intermediate 

valued basic event (0.7).  This calculated ORAND operator of 0.76 hows the nature of the 

logic gate lies between the maximum basic event (1.0) and minimal basic event (0.6).   

The Weight Vector, W  

This research will construct the W vector using two sets of weights contained in 

BUILDER®.  At the component-section level of the building hierarchy, Figure 4, this 
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research uses an average subcomponent importance weight to populate component-

section W vector.  At the component level, each component’s Component Criticality 

Index (CCI) populates the W vector.  The Construction and Engineering Research 

Laboratory (CERL) developed the subcomponent importance weights and CCI.  The 

importance weights represent each component-section’s cost and importance in relation 

to its associated component while the CCI quantifies the same relationship between the 

component and the system (United States ARMY Corps of Engineers (USACE), 2015b).  

Because all values of W must be between 0 and 1, all weights and CCIs will be 

standardized when populating the W vector. 

Because Ordered Weighted Averaging orders the argument vector, the order in 

which the weights are placed in the weight vector can effect the scalar ORAND operator 

produced by the cross product of the two vectors.  However, neither Yager (1988) nor 

Ross (1996) prescribe a method for the populating the W vector prior to ordering the B 

vector.  In order to provide a consistent method for populating the W vector, this research 

populates both the W vector and B vector in ascending order based on the numerical 

component-section indicator given in BUILDER™.  After which the B vector is ordered 

consistent with the method described by Yager (1988) while the W maintains its initial 

ordering.  This method for populating the W vector is consistent with the method used to 

develop the PoF model (Alley, 2015). 

The Argument Vector, B 

This research uses equation to calculate the probability vector, B, for a given 

component-section.  This equation represents a Weibull cumulative probability 

distribution: 
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where A is an asset’s initial condition index at time of installation, assumed to be 100.  

CIf is the condition index threshold for failure, set at CIf  = 37.   is the Weibull scale 

parameter, and  is the Weibull shape parameter.  The PoF model assumes a  = 1 and an 

 of 2.64 (Alley, 2015).  The time in years, t, is represented as a percentage of the asset’s 

expected service life.  This research calculates t by taking the component-sections 

average age and dividing by the expected service life. 

Equation 13 calculates the probability of failure for each component-section in a 

system, representing the individual values, bi, in the argument vector.  These values range 

from 0.00 to 1.00, satisfying the requirement that bi  [0,1].  In accordance with the 

OWA, this method orders all bi values to form the completed B vector.  Figure 9 displays 

a pictorial and mathematical representation for calculating the probability of failure, P(t), 

and reliability, R(t), for a simple system using the PoF model. 

Model Validation: Performance Assessment 

Two-Way Contingency Analysis 

This research employs the use of two-way contingency analysis to assess each 

model’s performance.  Contingency analysis provides the ability to test for independence 

between two categorical variables (McClave, Benson, & Sincich, 2014).  In this research, 

the categorical variables are the truth state and the model’s predicted state.  Both the truth 

state and model predicted state consist of a failed and non-failed sample, thus providing 

the necessary groupings for a two-way analysis.  To populate the failed sample, this 
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research considers a system failed if for a given year of analysis if it has a work order 

(WO) indicating a system level failure, as described in Chapter II.  To populate the non-

failed sample, this research randomly selected a representative sample from the 

remaining system population.  For continuity in methodology, the non-failed sample size 

will match the failed population size. These two failed and non-failed samples represent 

the truth state. 

After placing systems in their respective populations within the truth state, this 

research cross-references their corresponding facility number with BUILDER® to 

determine the age and service life of each component-section in the system.  Given the 

age and service life, the OWA method calculates a probability of failure for that system.  

Using the prescribed failure threshold of SCI = 37, this research is now able to assign 

systems to the failed or non-failed population within the model predicted state.  

Remembering that SCI of 37 is a threshold for reliability, the probability of failure, P(f), 

calculated by the OWA method is subtracted from 1 to calculate the reliability of the 

system, R(t).  Table 6 summarizes the criteria for each categorical state population.  The 

annotations provided in Table 6 correspond to the population size depicted in the two-

way table in Figure 10.  The sample size for the entire test, n = ntf + ntn = nmf + nmn.  
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System          P(t)          

                       
                                

Component   w = 0.4         w = 0.6     
                          
                          

Comp. w = 0.2  w = 0.3  w = 0.5   w = 0.1  w = 0.6  w = 0.4  
Section                     

   b1 = 0.1 b2 = 0.2 b3 = 0.6  b1 = 0.4 b2 = 0.5 b3 = 0.3 
    *bi values are theoretical output of equation 13               
   Example Calculations:                           
    Component-Section Level 

   W1 = (0.2, 0.3, 0.5)       W2 = (0.1, 0.6, 0.4)     

   B1 = (0.6, 0.2, 0.1)       B2 = (0.5, 0.4, 0.3)     
   F(B1) = W1 x B1       F(B2) = W2 x B2     
   = (0.2*0.6+0.3*0.2+0.5*0.1)    = (0.1*0.5+0.6*0.4+0.4*0.3) 

   F(B1) = 0.68        F(B2) = 0.41      
    Component Level 

   W3 = (0.4, 0.6)                 

   B3 = (0.68, 0.41)                

   P(t) = W3 x B3 = (0.4*0.68 + 0.6*0.41)           
                       
   P(t) = 0.518  R(t) = 1-P(t) =1-0.518 = 0.482        

Figure 9: PoF Model Example Calculation 

 

Table 6: Contingency Analysis Population Criteria 

State: Population Criteria Annotation 
Truth: Failed A system having a work order indicating system 

level failure.  Direct schedule work with type of 
service indicator emergency (E) or urgent (U). 

ntf 

Truth: Non-failed Any system not having a work order indicating a 
system level failure. 

ntn 

Model: Failed Any system with a reliability, R(t) ≤ 0.37 nmf 
Model: Non-failed Any system with a reliability, R(t) > 0.37 nmn 
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  Model Predicted State  
  Failed Not Failed  

Truth 
State 

Failed True Pos False Neg ntf 
Not Failed False Pos True Neg ntn 

  nmf nmn n 

Figure 10: Example Two-Way Table 

 

Figure 10 introduces four terms when defining the agreement or disagreement 

between the truth state and model predicted state: true positive, true negative, false 

positive, and false negative.  To ensure understanding of these terms, this research 

defines each as follows.  True positive is when both the truth state and model state agree 

on the failed nature of a system.  True negative is when the truth state and model state 

agree on the non-failed state of a system.  A false positive exists when the model predicts 

failure, but in fact the truth state declares a non-failed system.  A false negative exists 

when the model predicts a non-failed system, but in fact the truth state declares a failure. 

Hypothesis Testing 

As stated above, two-way tables test for independence between two categorical 

variables (McClave et al., 2014).  This research identifies the two categorical variables as 

the truth state and the model predicted state, displayed in Figure 10.  This research uses 

two-way tables and their associated hypothesis testing method to address model 

performance.  The null hypothesis, H0, is that these two variables are independent.  The 

corresponding alternate hypothesis, Ha, is that the two variables are dependent.  Figure 11 

below displays the general form for hypothesis testing with two-way table analysis. This 

research will utilize the Fisher’s Exact Test as the resulting test statistic with a 
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corresponding significance level,  = 0.10.  Therefore, this research will consider any 

Fisher’s Exact Test p-value < 0.10 statistically significant. 

 

Ho = The two classifications are independent 
Ha = The two classifications are dependent 
Test statistic = Fisher’s Exact Test, p-value 
Rejection Region =  > p-value 

Figure 11: Two-Way Table Analysis: Fisher’s Exact Test for Independence (adapted 
from McClave et al., 2014) 

 

Fisher’s Exact Test 

Fisher’s Exact Test is a probability test that calculates the exact probability of 

receiving a specific outcome of a two-way table.  This test appropriately replaces a chi-

squared or other approximation test statistics when expected individual cell counts in a 

two-way table are low: less than five (McClave et al., 2014) or less then ten (Shasha & 

Wilson, 2011).  This research will utilize the more conservative threshold provided and 

use the Fisher’s Exact Test when cell counts are lower then five.  Using a table similar to 

Figure 10, Figure 12 shows an example of a two-way table with low expected values, 

indicated by bold text.  These expected values are less then five, thus suitable for Fisher’s 

Exact Test. 
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  Model Predicted State  
  Failed Not Failed  

Truth 
State 

Failed TP FP ntf 
Not Failed FN TN ntn 

  nmf nmn n 
    
    
  Model Predicted State  
  Failed Not Failed  

Truth 
State 

Failed 
3 1 

4 
2 2 

Not Failed 
2 4 

6 
 3 3 
  5 5 10 

Figure 12: Example Two-Way Table 

 

Fisher’s Exact Test provides an exact probability, or p-value, associated with a 

specific table.  Referencing the upper portion of Figure 12, equation 14 provides the p-

value calculation for a specific two-way table. 

 
ሺ்௉ାி௉ሻ!ሺிேା்ேሻ!ሺ்௉ାிேሻ!ሺி௉ା்ேሻ!

்௉!ிே!ி௉!்ே!௡!
 (14) 

  
For the specific table displayed in Figure 12, equation 14 calculates the p-value as 

follows: 

 
ሺଷାଵሻ!ሺଶାସሻ!ሺଷାଶሻ!ሺଶାଷሻ!

ଶ!ଶ!ଷ!ଷ!ଵ଴!
ൌ 10

42⁄ ൌ 0.2381 (15) 

  
 

This example calculates a p-value of 0.2381 for the specific table displayed in 

Figure 12.  To calculate the Fisher’s Exact Test p-value, this method first finds the 

resulting p-values for all combinations of a two-way table that have the same column and 

row totals as the observed table in Figure 12.  This method then sums the p-value of all 
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two-way tables labeled “more extreme” then the observed table.  The Fisher’s Exact 

method labels a table “more extreme” if the table has a p-value less than or equal to the 

observed table (Shasha & Wilson, 2011).  Figure 13 provides an example of calculating a 

p-value with the Fisher’s Exact methodology using Figure 12 as the observed table. 

 

Matrix Probability Calculation Probability 

0 4 4 
(0+4)!(5+1)!(0+5)!(4+1)! / 
0!4!5!1!10! 0.02381 

5 1 6 =1/42 
1 correct, 9 incorrect 

1 3 4 
(1+3)!(4+2)!(1+4)!(3+2)! / 
1!3!4!2!10! 0.2381 

4 2 6 =10/42 
3 correct, 7 incorrect 

2 2 4 
(2+2)!(3+3)!(2+3)!(2+3)! / 
2!2!3!3!10! 0.4762 

3 3 6 =20/42 
5 correct, 5 incorrect 

3 1 4 
(3+1)!(2+4)!(3+2)!(1+4)! / 
3!1!2!4!10! 0.2381 

2 4 6 =10/42 
7 correct, 3 incorrect (observed table from Figure 12) 

4 0 4 
(4+0)!(1+5)!(4+1)!(0+5)! / 
4!0!1!5!10! 0.0238 

1 5 6 =10/42 
9 correct, 1 incorrect 
       
Fisher's Exact 
p-value = 0.2381+0.2381+0.0238+0.0238 0.5238 

Figure 13: Example of Fisher's Exact p-value Calculation 

 

For the example displayed in Figure 13, the resulting Fisher’s Exact Test p-value 

for the table in Figure 12 is p = 0.5238.  Because contingency analysis tests for 

independence between two categorical variables, this p-value indicates the dependence 
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between the truth state and the model predicted state has ~52.4% probability being the 

result of random chance.  This high p-value would require this research to not reject the 

null-hypothesis and maintain that truth state and model predictive state are independent 

of one another. 

Odds Ratios 

The p-value calculated by Fisher’s Exact Test enables this research to determine 

the presence of a relationship between the truth state and model predictive state.  

However, this value fails to communicate the magnitude and nature (i.e. positive or 

negative) of that relationship.  The odds ratio allows for the determination of the 

magnitude and nature of the relationship.  This method calculates the odds ratio (OR) 

using equation 16 (Glas, Lijmer, Prins, Bonsel, & Bossuyt, 2003). 

 ܱܴ ൌ ܶܲ
ܰܨ

ܲܨ
ܶܰൗ  (16) 

  
An OR value can range from 0 to infinity.  Values greater than 1.0 indicate a 

positive relationship between the truth and model state.  Higher OR values indicate a 

stronger positive relationship and signify stronger model predictive capability.  Values of 

1.0 indicate no relationship between the truth state and the model predictive state.  OR 

values equal to 1.0 are typically accompanied by p-values of 1.0, both values equaling 1.0 

indicate complete independence (i.e. no relationship) between the two states.  OR values 

less than 1.0 indicate a negative relationship between the truth and model state (Glas et 

al., 2003).  Therefore, when assessing the overall performance of the model, this research 

looks to obtain statistically significant p-values accompanied by OR values greater than 

1.0. 
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Model Validation: Accuracy Assessment 

In addition to assessing each models performance through the use of contingency 

analysis, this research also assesses each model’s ability to accurately calculate system 

reliability.  This method calculates system level reliability using a counting process 

known as the Nonhomogeneous Poisson Process and Availability Growth modeling. 

Counting Processes 

Counting processes are useful when considering repairable systems, sub-systems, 

or components.  Given a system put into operation at time t = 0, its kth failure occurs at 

time Sk.  Given a failure, the system is restored to a functioning state allowing it to 

operate until the next failure.  Therefore, over its lifetime, a system will have a sequence 

of failure time S1, S2, S3,…Sk .  Additionally, Tk represents the time between failure k-1 

and failure k. Tk is known as the failure interarrival time, or time between failures 

(Høland & Rausand, 1994). 

The random variable of interest in a counting process, N(t), is the number of 

failures in the time interval (0,t].  This process is considered a counting process if N(t) 

satisfies the following (Høland & Rausand, 1994): 

1. N(t) ≥ 0 
2. N(t) is an integer 
3. If s < t then N(s) ≤ N(t) 
4. For s < t, [N(t)-N(s)] equals the number of failures in the interval (s, t] 

 
Nonhomogeneous Poisson Process 

When considering a counting process, the interarrival times are important as they 

determine which kind of counting process is appropriate for calculating system reliability 

(Høland & Rausand, 1994).  Due to the nature of system failure interarrival times, this 
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research will use a Nonhomogeneous Poisson Process (NHPP).  NHPP assumes 

interarrival times are neither independent nor identically distributed.  For clarification, an 

assumption of independence requires that the number of failure events in interval (t-1, t] 

is not influenced by failures in a previous interval.  Further, an assumption of identical 

distribution requires that the number of failure events in interval (t-1, t] depends only on 

the length of the interval and not the interval’s distance from t0 (Høland & Rausand, 

1994).  This research assumes that the systems considered have failure times that are 

neither independent nor identically distributed.  Failure events in interval (t-1, t] are 

influenced by previous failures and the number of failures in interval (t-1, t] do depend on 

the length of the interval’s distance from t0.  Negating the assumptions of independence 

and identical distribution is consistent with the assumption that the systems analyzed in 

this research are minimally repaired.  In other words, maintenance strategies restore 

failed systems to an operational state as quickly as possible by replacing only the failed 

component(s) and not the entire system.  Høland and Rausand (1994) label this strategy 

“as bad as old”, compared to a renewal process where a system is restored to “as good as 

new” after each failure. 

  

Renewal Process  
Independent Increments  “as good as new” repair 

strategy Identically Distributed  
Nonhomogeneous Poisson Process  
Non Independent Increments  “as bad as old” repair 

strategy Non Identically Distributed  
   

Figure 14: Counting Process Assumptions 
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Because the NHPP has interarrival times that vary with time, the typical Poisson 

arrival rate, , is replaced by a cumulative intensity function M(t), a function of the Rate 

of Occurrence of Failure (ROCOF) function, m(t) (Høland & Rausand, 1994).  Equation 

17 shows the relationship between M(t) and the ROCOF function, m(t).  Common forms 

of the ROCOF function in a NHPP process are the exponential failure rate model, the 

linear failure rate model, and the power law failure rate model (Atwood, 1992). 

ሻݐሺܯ  ൌ ׬ ݉ሺݐሻ݀ݐ
௧
଴  (17) 

  
Because this research focuses on repairable systems, typical calculations for 

reliability are not suitable, as they typically do not consider events beyond an initial 

failure.  Høland and Rausand (1994) introduce Availability as a more appropriate 

measure for assessing the probability that a repairable system will be in a functioning 

state at time t.   Given that the system has the following state variable: 

 Xሺtሻ ൌ 	 ൤
1	if	component is functioning at time t
0	if	component is under repair at time t 

 

   
Equation 18 calculates the availability, or probability that the system is functioning, at 

time t 

ሻݐሺܣ  ൌ ܲሺܺሺݐሻ ൌ 1ሻ ൌ ெ்஻ி

ெ்஻ிାெ்்ோ
 (18) 

  
 

where MTBF is the mean time between failure and MTTR is the mean time to repair. 

This research will model MTBF and MTTR using the Rate of Occurrence of 

Failure function, m(t).  As previously mentioned, there are three common forms of the 

ROCOF function with respect to NHPPs.  This research will assess the fit of the power-

law model in conjunction with Availability Growth Modeling. 
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Availability Growth Modeling 

Availability Growth Modeling (AGM) assesses system performance based on the 

probability that a system will be in a functional state at a given time.  When used with 

repairable systems, it is appropriate to assess the MTTF and MTTR using a ROCOF 

function (Bluvban & Porotsky, 2011).  This research will assess the fit of the power-law  

ROCOF function.  The power-law function intensity function, m(t), has the form 

 ݉ሺݐሻ ൌ ఉିଵݐߚߣ (19) 
  
with model parameters  and  (Department of Defense, 1981).  This research will assess 

the fit of the  power-law intensity function via a visual test known as Duane plotting and 

a parametric goodness of fit test as outlined in Military Handbook 189 (Department of 

Defense, 1981). 

Reliability analysts use Duane Plotting to assess fit and determine parameter 

estimates for a power-law intensity function.  This research will use Duane plotting 

primarily to assess fit.  Duane plots plot cumulative MTBF versus actual failure times on 

a log-log scale.  For example, if the kth failure occurs at time tk, Duane plots plot tk/k 

versus tk for all observed failures.  If the data follow a power-law intensity function, the 

plot should display a linear trend (NIST/SEMATECH, 2012).  Figure 15 displays an 

example of a simple Duane Plot.  The positive slope indicates an increase in the MTBF, 

signifying an improving system. 
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Figure 15: Example Duane Plot (Adapted from NIST/SEMATECH, 2012)  

 

This research will utilize the procedures to estimate parameters and goodness of 

fit for a power-law intensity function for time terminated testing, as outlined in Military 

Handbook 189.  Time terminated testing procedures assume that the data analyzed is 

from systems which are terminated at a predetermined time or are currently in operation 

and data is available through some time (Department of Defense, 1981).  The latter of 

which describes the systems analyzed in this research.  To determine the parameters of 

equation 19, this research uses maximum likelihood estimates ߚመ  and ߣመ 

መߚ  ൌ ே

ே௟௡்ି∑ ௟௡௑೔
ಿ
೔సభ

 (20) 

  

መߣ  ൌ ܰ ܶఉ෡⁄  (21) 
  
where N is the total number of failures, T is the total time on test for the system of 

interest, and Xi is the failure time of the ith failure (Department of Defense, 1981). 

For systems with small sample sizes, this research utilizes an unbiased estimator 

መߚ	to replace ߚ̅ . 

ߚ̅  ൌ ேିଵ

ே
መߚ  (22) 
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Given the maximum likelihood estimates, this research will determine the goodness of fit 

through the use of the Cramer-von Mises statistic.  The null hypothesis associated with 

this test statistic is that a NHPP with intensity function 

 ݉ሺݐሻ ൌ ఉିଵݐߚߣ (23) 
  
accurately describes the reliability growth of a given system.  The goodness of fit statistic 

is  

 
ெܥ						

ଶ ൌ
1

ܯ12
൅෍൥൬ ௜ܺ

ܶ
൰
ఉഥ

െ
2݅ െ 1
ܯ2

൩

ெ

௜ୀଵ

ଶ

 (24) 

   
where M is equal to N for time terminated testing.  The null hypothesis is rejected if the 

statistic exceeds the for the critical value at a significance of 0.10 (Department of 

Defense, 1981).  If the research determines that a Nonhomogeneous Poisson Process 

appropriately represents the data, the MTBF at time, t, is simply the inverse of m(t). 

ሻݐሺܨܤܶܯ  ൌ ݉ሺݐሻିଵ ൌ ఉିଵ൧ݐߚߣൣ
ିଵ

 (25) 
  

 
Calculating Availability 

This research assumes both failure data and repair data follow a NHPP and will 

use the Duane plotting method and goodness of fit testing to determine distribution 

parameters.  With goodness of fit requirements satisfied and parameters fit to the data, 

this research calculates the availability of system with equation 26.  Time, t, is the 

system’s age in 2015, the year from which the data was pulled. 

ሻݐሺܣ  ൌ ெ்஻ி

ெ்஻ிାெ்்ோ
 (26) 
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Accuracy Assessment: Paired Difference 

After populating the failed sample and non-failed sample, as described earlier and 

in Alley (2015), and calculating both the system reliability (PoF model) and system 

availability (Availability Growth Model), this research focuses on assessing the accuracy 

of the PoF as compared to the Availability Growth Model through paired differences.  

 Paired difference experiments allow for the comparison of two populations to 

determine if their means differ.  This method compares population means by comparing 

the differences between experimental units (McClave et al., 2014).  In the case of this 

research the experimental units are the PoF model and Availability Growth Model output 

for a given system. 

Paired difference experiments use hypothesis-testing procedures similar to those 

explained previously.  This research will use a large sample, two-tailed test to determine 

if the two models are comparable.  Figure 16 displays hypothesis-testing criteria for this 

test.  This research will use a significance level, , of 0.10 and a D0 = 0.  Using D0 = 0 

signifies a null hypothesis, H0, stating that the two population means are equal.  If the 

results fail to reject the null hypothesis, the model is in agreement with the AGM and 

thus an accurate estimate of system reliability. 
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Two-tailed test 
Ho: 0 = D0 
Ha: 0 ≠ D0 

Test statistic:	ݖ ൌ ௗതି஽బ
ఙ೏ ඥ௡೏⁄

ൎ ௗതି஽బ
௦೏ ඥ௡೏⁄

  

Rejection Region: |ݖ| ൐ ఈݖ ଶ⁄    = 0.10 
Confidence Interval 

݀̅ േ ఈݖ ଶ⁄
ௗߪ
ඥ݊ௗ

ൎ ݀̅ േ ఈݖ ଶ⁄
ௗݏ
ඥ݊ௗ

 

Figure 16: Paired Difference Test of Hypothesis for d = (1-2) (Adapted from McClave 
et al., 2014) 

 

Summary 

This chapter presented the methodology associated with this research. First by 

explaining the calculations behind the Probabilistic Assessment of Failure (PoF) model 

developed by Alley (2015).  Second, by presenting the method for assessing the 

performance of both the PoF and BUILDER® models through the use of the Fisher’s 

Exact Test and Odds Ratios.  Lastly, by presenting a method for assessing both models 

accuracy through comparison of a Nonhomogeneous Poisson Process (NHPP) 

Availability Growth Model.  Through these accuracy and performance assessments, this 

research will determine the validity of both the PoF and BUILDER® model to calculate 

reliability at the system level. 
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IV.  Analysis and Results 

Chapter Overview 

This chapter presents the results of this research effort.  First, the chapter presents 

the results associated with the performance of both the Probabilistic Assessment of 

Failure (PoF) and the BUILDER® SCI models through contingency analysis and the use 

of odds ratios.  This segment of analysis utilized a Shiny application and system attribute 

data to determine what type of systems, and at what reliability threshold each model 

displays significant agreement with the truth state.  By doing so, this research focused on 

improving the predictive capability both models.  Next, this research attempts to compare 

the output of both models with that of an accepted method in reliability analysis.  

Utilizing a Nonhomogeneous Poisson Process (NHPP) method, this research attempts to 

develop a system Availability Growth Model (AGM) for 40 HVAC systems in order to 

compare the output with that of the PoF and SCI models.  Each major sections of this 

chapter presents information regarding the data used in the research, the results of the 

analysis, and relevant discussion with respect to the results. 

Model Performance Assessment 

This section presents the data, results, and discussion associated with the 

performance of both the PoF model and the SCI model.  This research assessed the 

performance of each model in four major building systems (heating ventilation and 

cooling (HVAC), electrical, fire protection, and plumbing) through the use of 

contingency analysis.  The research ultimately narrows its scope to focus primarily on the 

performance of both models with respect to HVAC systems. 
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Failure Data 

This research collected work order (WO) data from calendar year 2014 for six Air 

Force Installations: Barksdale AFB, Cannon AFB, Davis Monthan AFB, Keesler AFB, 

Patrick AFB, and Scott AFB.  This research used a definition of failure which elicited 

failure data from the USAF’s Interim Work Information Management System (IWIMS). 

Table 7 presents examples of work orders indicating system level failures used for this 

research.  If a facility had at least one WO indicating failure for a given system during 

2014, that system was placed into the failed population for the year of analysis. 

 

Table 7: Example Work Orders Indicating System Level Failure 

WOTITLE WOIND TYPESVC WONR FACIDNR
HVAC System Failures 
HEATER INOP FOR BAYS 1 AND 2 J U Y6486 04809 
NO HEAT TO BLDG J U Y6729 00220 
A/C INOP IN HALF THE BLDG  J E Y6816 00078 
A/C INOP FOR BLDG J U Y8345 02301 
Electrical System Failures 
HALF THE BUILDING HAS NO POWER J U Y9066 04701 
NO POWER TO BUILDING. J U Y9859 07318 
POWER OUT IN WHOLE BLDG J U Z1048 05230 
NO POWER J U Z1061 07000 
Fire Protection System Failures 
FIRE ALARM IN TROUBLE, ISO DOC J U Y9706 00129 
FIRE ALARM IN TROULBE J U Z0427 00183 
FIRE ALARM SYSTEM, STILL IN FI J E Z0675 04876 
FIRE ALARM INOP J U Z3226 00410 
Plumbing System Failures 
NO WATER IN BUILDING. J U Y7782 00130 
LOW WATER PRESSURE J E Z0915 02350 
WATER CUT OFF IN BLDG J U Z1743 00096 
NO WATER J E Z2717 75046 
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BUILDER® Data 

After this research determined the failures for a given system, BUILDER® data 

was necessary to calculate the average age of each component-section.  Component-

section data was obtained from BUILDER® by cross referencing the facility ID number 

(FACIDNR) associated with each failure WO.  Because the contingency analysis 

explained in Chapter III required both a failed and non-failed sample, this research 

populated a non-failed sample via random sampling from the remaining facilities in each 

installation’s BUILDER® inventory.  For continuity of method with Alley (2015), this 

research populated the non-failed sample to equal the size of the failed sample for each 

system.  This research then obtained component-section data for the non-failed sample to 

determine the average component-section age. 

As a note, this research selected the six bases for analysis based on the quality of 

their BUILDER® inventory data.  However, BUILDER did not contain inventory data 

for some facilities.  If a non-failed system was not in the inventory data, this research 

randomly chose an additional system to take its place.  If a failed system was not in the 

inventory data, the failed data point was omitted thus reducing both the failed and non-

failed samples by the number of omitted data points.  

Table 8 displays the number of failures per system per base for 2014.  It also 

annotates the number of systems omitted due to lack of facility inventory data in 

BUILDER® and total failed sample size per system.   
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Table 8: Model Performance Assessment Data Summary 

Installation HVAC Plumbing Electrical Fire  

Barksdale 
49 4 14 2 Failed 
12 1 5 2 Omitted 

Cannon 
89 10 11 4 
8 2 2 3 

Davis Monthan 
74 4 18 5 
11 1 6 3 

Keesler 
29 3 13 7 
4 3 4 0 

Patrick 
88 2 16 57 
7 0 7 37 

Scott 
88 5 16 2 
25 1 5 0 

Total Failed 417 28 88 77  
Total Omitted 67 8 29 45  

Failed Population Total 350 20 59 32 
 
 
 

Because this research narrowed its focus to HVAC systems and collected 

additional HVAC system data, it was able to ensure the randomly selected non-failed 

systems were a representative random sample.  The research ensured the non-failed 

sample was representative with respect to age and size of the facility supported by the 

HVAC system.  Table 9 displays the breakdown of the non-failed HVAC sample 

compared to that of the non-failed HVAC population.  The “bins” used to ensure a 

representative sample were based on the 10% quantiles of the population with respect to 

the two attributes.  Because the same level of analysis performed on the HVAC systems 

was not accomplished for electrical, fire protection, and plumbing systems, attribute data 

was not available to ensure a representative sample for these systems. 
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Table 9: HVAC Sample Representation 

Facility Size (sq ft) Facility Year 
Population 
Quantiles 
(sq ft) 

Population  Sample  
Population 
Quantiles 
(year) 

Population  Sample  

560 10.0% 10.5% 1951 10.4% 11.6% 
1,515 9.9% 10.5% 1958 9.6% 10.8% 
2,805 10.0% 11.6% 1968 10.9% 9.3% 
4,551 10.0% 9.3% 1977 9.1% 10.5% 
6,360 10.3% 10.5% 1986 10.4% 11.0% 
9,825 9.8% 10.2% 1991 8.6% 7.3% 
15,832 10.0% 11.6% 1996 11.6% 12.2% 
25,598 10.0% 11.0% 2000 10.0% 9.3% 
45,184 10.0% 6.4% 2006 10.2% 9.3% 
275,900 9.9% 8.4% 2014 9.1% 8.7% 

 
 
 

Table 9 displays the proportion of the population and sample that fall between the 

10% quantiles.  As expected, the population proportions are fairly close to 10% in each 

quantile.  With respect to both attributes, Table 9 displays that the sample shows some 

deviation from the population proportions.  To determine if the sample is representative, 

this research used a t-test to compare the mean population and sample proportions.  The t-

test employed a null hypothesis of “the true difference in means is equal to zero” at a 

statistical significance of 0.10.  For both facility size and facility year, the t-test failed to 

reject the null hypothesis with p-values of 0.98 for both tests.  Based on these results, this 

research concludes that there is no difference in mean proportions for both facility size 

and facility year; and deems the sample used a random representative sample. 
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Calculations Using PoF Model 

After computing the average age for each component-section, this research used 

equation 27 to calculate each component-sections probability of failure.  After which the 

system level probability of failure was computed using the structure dictated by the PoF 

model.  Due to the large nature of the data set, this research utilized the statistical 

programming software R to compute the system level probabilities of failure for the four 

major systems at the six installations.  Appendix A displays the calculation results for 

each installation and Appendix B displays the R code used to compute the system level 

probability of failures. 

 

௙ܲ ൌ 1 െ ൦A ൈ ቈ
1
௙ܫܥ

቉
ି൬௧ఉ൰

ഀ

൪ (27) 

   
 

Contingency Analysis 

From the results displayed in Appendix A, this research was able perform a 

contingency analysis for each system.  The original PoF model validation assumed that a 

reliability threshold of 37 was the threshold for system failure.  This research focuses on 

determining the performance of each model by determining at what threshold the model 

displays statistically significant results.  This research defines statistical significance as a 

contingency analysis having a Fisher’s Exact p-value less than or equal to 0.10.  This p-

value indicates a statistically significant relationship between the PoF models output and 

the truth state.  The level indicates that there is less than a ten percent probability that a 

relationship between the two states is due to random chance.  This research also employs 

an odds ratio to determine the magnitude and direction of the relationship; any odds 
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ration greater than 1.0 indicates a positive relationship.  Therefore, this research defines 

“good model performance” as a contingency analysis having a p-value less than 0.10 

combined with an odds ratio greater than or equal to 1.0.  Appendix C displays the R 

code used to calculate and plot p-values and odds ratios over all possible threshold 

values.  

PoF Performance Results: Fire, Plumbing, and Electrical systems 

Figure 17 through 20 display the output of the model performance calculations for 

the four major systems under consideration.  The data presented is from all six 

installations introduced above.  A horizontal dashed line is included in each figure to 

annotate the statistical significance requirement of 0.10.  Beginning with Figure 17, the 

PoF model does not display good performance within the electrical system.  However, 

there are areas of positive relationship between PoF model output and the truth state but 

not at the statistical significance expected for this research. 

 

 

Figure 17: Electrical System PoF Model Performance 
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Figure 18 displays the results for PoF model performance with respect to the fire 

protection system.  Unlike the electrical system, the PoF displays good performance at a 

failure threshold of 49, with a p-value of 0.06 and odds ratio of 4.29.  This indicates 

agreement between the model predictive state and the truth state when the reliability 

threshold is set at 49.  This signifies that infrastructure managers should expect to see fire 

protection system failures when a system receives a reliability estimate at or below 49, as 

calculated by the PoF model. 

Figure 19 displays the results for the PoF model with respect to the plumbing 

system.  The PoF begins to demonstrate a positive relationship at approximately a 

reliability of 70 and approaches statistical significance at reliability thresholds of 77 and 

84.  However, the model falls slightly short with p-values of 0.20 and 0.11 respectively.  

The PoF model does not obtain good performance until a reliability threshold of 95 with 

a p-value of 0.07 and odds ratio of 5.74.  While not statistically significant until a 

threshold of 95, the PoF model does demonstrate some performance at lower reliabilities 

and suggest a failure threshold for the plumbing systems may reside in the 70-85 range. 
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Figure 18: Fire Protection System PoF Model Performance 

 

 

Figure 19: Plumbing System PoF Model Performance 

 

Figure 20 presents the results for PoF model performance with respect to the 

HVAC system.  This figure differs from the previous three in that the model does not 

display a positive relationship at any reliability threshold.  The model attains an odds 

ratio of 1.0 near a reliability of 90, however the odds ratio never goes above 1.0.  Because 



 

64 

PoF model output displays some level of positive relationship with the truth state with the 

three previous systems and no positive relationship with the HVAC system, this research 

continued by focusing solely on the HVAC system. 

 

 

Figure 20: HVAC System Model Performance 

 

SCI Model Performance Results: Fire, Plumbing, and Electrical systems 

Similar to the analysis of the PoF model, this research began analyzing the SCI 

mode with a basic analysis of the fire protection, electrical and plumbing systems.  The 

results of that analysis are displayed in figures 21-23.  Figure 21 displays the 

performance of the SCI model when considering electrical systems.  The figure shows no 

area of positive agreement between the model predictive state and truth state.  Figure 22 

displays the performance of the SCI model for fire protection systems.  The figure 

displays areas of positive agreement between reliability thresholds of 8-25 and near 65.  

When analyzing the contingency tables for these thresholds, this research suggests 65 as a 
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more suitable threshold.  While not statistically significant with a p-value of 0.59 and 

odds ratio of 1.52, a threshold of 65 displays greater positive detection to false detection 

when analyzing the contingency table.  Figure 23 displays positive agreement for the 

plumbing system at reliability thresholds of 88 and 92.  Although not statistically 

significant, when analyzing the contingency tables for these values this research suggests 

88 as a more suitable threshold.  Having a p-value of 0.32 and an odds ratio 2.39 of, the 

contingency table for a threshold of 88 displayed more positive detections then false and 

a balance between false positives and false negatives. 

 

 

Figure 21: Electrical system SCI Model performance 
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Figure 22: Fire Protection system SCI Model performance 

 

 

Figure 23: Plumbing system SCI Model performance 

 

Model Performance Assessment: HVAC system analysis  

In an attempt to have a greater impact on the reliability analysis for Air Force 

civil infrastructure and generate greater understanding of each model’s performance with 
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respect to a single system, this research limited further analysis solely to HVAC systems.  

In doing so, this research obtained HVAC system attribute data to determine if the PoF 

and SCI models performed better with different types and sizes of HVAC systems. 

In order to further the analysis, this research determined different attributes 

associated with each system.  The following attributes were obtained from BUILDER® 

for each HVAC system: number of floors in the facility, square footage of the facility, 

system age, facility age, and number of unique component-sections in the systems.  This 

research attempted to use a measure of the systems size (total tonnage) as an attribute for 

analysis.  This attribute was ultimately eliminated due to insufficient data on system 

tonnage within BUILDER®. 

This research created and utilized a Shiny© application to manipulate the type 

and range of the above attributes to asses each model’s performance.  For example, a 

system attribute of facility square footage can be selected and HVAC systems supporting 

facilities larger than 15,000 square feet can be assessed.  The Shiny© application 

developed for this research is available at https://prdhd7.shinyapps.io/Deering-16-M-

143/#1.  The application is interactive and users may select and change system attributes 

for analysis. 

PoF Model Results: HVAC systems  

Figures 24 through 35 display the results of assessing PoF performance against 

different facility attributes.  Figure 24 displays the PoF model performance when 

analyzing facilities that are 15,000 sq-ft to 25,000 sq-ft.  While not at the statistical 

significance desired, the model begins to show agreement with the truth state at a 

reliability threshold near 40.  This particular example shows how accounting for other 
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system features can increase the predictive capability of the PoF model.  Figure 25 

displays the resulting contingency table, p-value, and odds ratio for a reliability threshold 

of 40. 

 

Figure 24: HVAC PoF Model (15K-25K Sq Ft) 

 

  PoF Predicted State    

  Failed Not Failed    

Truth State 
Failed 8 67 75 CIf =  40 
Not Failed 1 43 44 p-value =  0.151 

  9 110 119 odds ratio = 5.082 

Figure 25: HVAC PoF Model (CIf = 40, 15K-25K Sq Ft) 

 

The analysis continued by increasing the range of facility square footage to all 

facilities greater than 15,000 sq ft.  Figure 26 displays the results for the PoF model for 

these facilities indicating good performance at a reliability threshold of 35.  Figure 27 

displays the resulting contingency table, p-value, and odds ratio for a reliability threshold 

of 35.  The model displays statistically significant results with an odds ratio of infinity.  
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An odds ratio of infinity is a result of the contingency table having a zero count in the 

“false positive” cell.  While this result satisfies the requirements for statistically 

significant agreement between the PoF model predicted state and truth state, the 

contingency table in Figure 27 shows large count of “false negatives”.  This displays the 

PoF model leaves a substantial amount of failures left undetected. 

One could reasonably assume that larger facilities have larger HVAC systems; 

and large HVAC systems will likely have more unique component-sections.  Therefore, 

this research examined if the PoF model displayed any performance when limited to 

larger number of unique component-sections.  

Figure 28 displays PoF model results for systems with seven or more unique 

component-sections.  Although the model does not display good performance at any 

reliability threshold it does display positive agreement at a threshold of 35, similar to that 

of larger facilities (≥ 15,000 sq ft).   

This research also assessed model performance with respect to the number of 

floors in a facility.  Figure 30 displays the PoF model performance for facilities with 3 or 

more stories.  The model begins to display a positive relationship near a reliability 

threshold of 70 and continues to display this relationship through a reliability of 99.  In 

this range, the model displays the best performance at a reliability threshold of 77.5, 

displayed in Figure 31.  While this result is not consistent with a reliability threshold of 

35 displayed in Figures 26-29, it does suggest that a reliability threshold exists at 77.5.  

The merit with this threshold is the increased recognition of true failures.  While a 

threshold of 77.5 does not eliminate false positives or false negatives, the ratio of false 

detections to positive detections is substantially improved. 
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Figure 26: HVAC PoF Model ( ≥ 15K Sq Ft) 

 

  PoF Predicted State    

  Failed Not Failed    

Truth State 
Failed 8 196 204 CIf =  35 
Not Failed 0 96 96 p-value =  0.058 

  8 292 300 odds ratio = Infinity

Figure 27: HVAC PoF Model (CIf = 35, ≥ 15K Sq Ft) 

 

 

Figure 28: HVAC PoF Model ( ≥ 7 component-sections) 
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  PoF Predicted State    

  Failed Not Failed    

Truth State 
Failed 4 163 167 CIf =  35 
Not Failed 0 86 86 p-value =  0.302 

  4 249 253 odds ratio = Infinity

Figure 29: HVAC PoF Model (CIf = 35, ≥ 7 component-sections) 

 

 

Figure 30: HVAC PoF Model (3-9 Floors) 

 

  PoF Predicted State    

  Failed Not Failed    

Truth State 
Failed 31 6 37 CIf =  77.5 
Not Failed 7 8 15 p-value =  0.013 

  38 14 52 odds ratio = 5.695 

Figure 31: HVAC PoF Model (CIf = 77.5, ≥ 3 stories) 

  

Aside from indicators of facility size, this research also assessed the PoF model 

against age based attributes.  When analyzing against facility age, this research found no 

ranges in which the PoF model displayed good performance.  However, the PoF model 
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displayed good performance when analyzed against system age and segregated into two 

ranges: 0-9 years and ≥ 9 years.  Figure 32 and Figure 33 display the PoF model 

performance for systems with an average age greater than or equal to nine years.  The 

model displays good performance at a reliability threshold of 92.5.  Figure 33 displays 

the contingency table for this scenario highlighting a large proportion of true positives 

and false positives.  Figure 34 displays the PoF model performance for systems with an 

average age of 0-9 years.  Interestingly the model displays a reliability threshold of 91.5 

for this range, similar to that of systems nine years and older.  In contrast to the older 

systems, the contingency table for this scenario displays large proportion of true 

detections to false detections which is not the case for scenario with the systems greater 

than 9 years old.  

 

 

Figure 32: HVAC PoF Model (System age ≥ 9 years) 
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  PoF Predicted State    

  Failed Not Failed    

Truth State 
Failed 238 1 239 CIf =  92.5 
Not Failed 263 7 270 p-value =  0.072 

  401 8 409 odds ratio = 6.316 

Figure 33: HVAC PoF Model (CIf = 92.5, System age ≥ 9 years) 

 

 

Figure 34: HVAC PoF Model (System age 0-9 yrs) 

 

  PoF Predicted State    

  Failed Not Failed    

Truth State 
Failed 39 76 115 CIf =  91.5 
Not Failed 21 71 92 p-value =  0.091 

  60 147 207 odds ratio = 1.730 

Figure 35: HVAC PoF Model (CIf = 91.5, System age 0-9 yrs) 

 

In addition to PoF model assessment using HVAC system attribute data, this 

research also analyzed the models performance with respect to installation.  By doing so, 

this research could determine if the model displayed differences in reliability thresholds 
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based on the installation under consideration.  This research used the HVAC systems 

analyzed above to perform this analysis. 

Table 10 displays the results of the installation level analysis.  All six installations 

displayed areas of positive agreement between the model predictive state and the truth 

state.  However, the model did not display areas of statistically significant agreement 

when considering installation.  Additionally, the majority of possible reliability 

thresholds identified do not appear suitable due to the large number of false detections.  

This research ultimately concluded that installation was not a variable that contributed to 

the significance of the PoF model’s performance.  

 

Table 10: PoF Model performance for HVAC systems by installation 

 
CIf 

P-
value 

Odds 
ratio 

Suitability 

Barksdale         
>7 Component 
Sections 

53 0.27 2.81 Large number of false negatives 

Cannon         
Sq ft > 15K 65 0.13 2.98 Large number of false negatives 
System Age 0-9 yrs 95.5 0.23 2.28 Large number of false negatives 
Davis Monthan         
System Age 0-9 yrs 91.5 0.22 4.22 Large number of false negatives 
System Age > 9 yrs 92 0.12 Inf Large number of false positives 
Keesler         
Sq ft > 15K 51 0.12 4.20 Large number of false negatives 
>7 Component 
Sections 

51 0.24 2.80 Greater positive detections to false 

System Age > 9 yrs 51 0.31 2.24 Large number of false negatives 
Patrick         
System Age 0-9 yrs 91.5 0.21 2.10 Greater positive detections to false 
System Age > 9 yrs 82 0.33 2.27 Large number of false positives 
Scott         
System Age > 9 yrs 83 0.57 1.61 Large number of false positives 
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PoF Model Performance Summary  

Overall the PoF model showed sporadic performance in agreement with the truth 

state and model output at reliability thresholds of 35, 77.5, 91.5, and 92.5.  Among these 

thresholds, this research noted a reliability of 35, similar to that of the current 37.  

However, this threshold resulted in a substantial amount of false negatives.  Reliabilities 

of 77.5 and 91.5 stand out as more likely thresholds.  While each scenario has both false 

negatives and false positive detections, the number of positive detections is greater than 

the number false detections, indicating better model performance.  However, reliability 

thresholds of 77.5 and 91.5 are fairly high, suggesting the PoF model may be over 

estimating HVAC system reliability.  

SCI Model Performance: HVAC systems 

Figure 36 displays the performance for the SCI model for facilities greater than 

12,000 square feet.  The model achieves good performance at a SCI threshold of 55 with 

a p-value of 0.064 and odds ratio of 4.013.  The associated contingency table in Figure 37 

displays the results and indicates a similar to trend to that of the PoF model; the model 

predicts a large number false negatives. 
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Figure 36: HVAC SCI Model ( ≥ 12K Sq Ft) 

 

  SCI Predicted State    

  Failed Not Failed    

Truth State 
Failed 15 218 233 CIf =  55 

Not Failed 2 117 119 p-value =  0.064 

  17 335 352 odds ratio = 4.013 

Figure 37: HVAC SCI Model (CIf = 55, ≥ 12K sq ft) 

 

Figure 38 displays the performance of the SCI model with respect to 7 or more 

unique component-sections.  For these facilities, the model displays statistically 

significant results at a reliability threshold of 66 and a possible SCI threshold of 55.  

Figure 39 and 40 display the contingency tables for these two thresholds which indicates, 

again, a trend of numerous false negative predictions.  Due to the nature of displaying 

two possible reliability thresholds, this indicates the possibility of a true SCI threshold 

residing somewhere within the 55-66 range. 
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Figure 38: HVAC SCI Model ( ≥ 7 component-sections) 

 

  SCI Predicted State    

  Failed Not Failed    

Truth State 
Failed 17 150 167 CIf =  66 

Not Failed 3 83 86 p-value =  0.084 

  11 242 253 odds ratio = 3.124 

Figure 39: HVAC SCI Model (CIf = 66, ≥ 7 component-sections) 

 

  SCI Predicted State    

  Failed Not Failed    

Truth State 
Failed 10 157 167 CIf =  55 

Not Failed 1 85 86 p-value =  0.104 

  11 242 253 odds ratio = 5.388 

Figure 40: HVAC SCI Model(CIf = 55, ≥ 7 component-sections) 

 

When considering age related attributes, the SCI model displays fairly consistent 

results when segregating both facility age and system age.  With respect to facility age, 

the model displays a high level of agreement over ages 0-40 years and statistically 
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significant agreement at ages 20-40 years old.  Figure 41 and Figure 43 display the results 

for these scenarios, indicating a reliability threshold of 86.  With respect to system age, 

the model displays agreement over a range from 0-20 years, 20-40 years, and 0-40 years.  

In each scenario the model indicates a reliability threshold at or near 86.  Figure 45 and 

Figure 47 display the results for the 0-20 years and 20-40 years scenarios.  In both 

scenarios, false positive and false negative detections are present; however, the model 

presents a greater number of positive detections than false detections.  This finding 

suggests that an SCI score of 86 is more appropriate than previously discussed thresholds. 

 

 

Figure 41: HVAC SCI Model (Facility age 0-40 years) 

 

  SCI Predicted State    

  Failed Not Failed    

Truth State 
Failed 100 82 182 CIf =  86 

Not Failed 100 113 213 p-value =  0.130 

  200 195 395 odds ratio = 1.376 

Figure 42: HVAC SCI Model(CIf = 86, Facility age 0-40 years) 
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Figure 43:  HVAC SCI Model (Facility age 20-40 years) 

 

  SCI Predicted State    

  Failed Not Failed    

Truth State 
Failed 60 24 84 CIf =  86 

Not Failed 64 44 108 p-value =  0.095 

  124 68 192 odds ratio = 1.714 

Figure 44: HVAC SCI Model(CIf = 86, Facility age 20-40 years) 

 

 

Figure 45: HVAC SCI Model (System age 0-20 years) 
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  SCI Predicted State    

  Failed Not Failed    

Truth State 
Failed 161 140 301 CIf =  86 

Not Failed 139 159 298 p-value =  0.102 

  300 299 599 odds ratio = 1.314 

Figure 46: HVAC SCI Model(CIf = 86, System age 0-20 years) 

 

 

Figure 47: HVAC SCI Model (System age 20-40 years) 

 

  SCI Predicted State    

  Failed Not Failed    

Truth State 
Failed 36 11 47 CIf =  86 

Not Failed 30 20 50 p-value =  0.087 

  66 31 97 odds ratio = 2.164 

Figure 48: HVAC SCI Model(CIf = 86, System age 20-40 years) 

 

Lastly, Figure 49 displays the SCI model performance for all facilities considered.  

The model shows good performance again at a reliability threshold of 86 with a p-value 
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and odds ratio of 0.09 and 1.30, respectively, and the associated contingency table is 

displayed in Figure 50.  The contingency table displays a high number of false positives 

and false negatives; however, the model attains more positive detections than false 

detections.  The statistical significance at this threshold indicates that for a majority of the 

700 HVAC systems considered, Air Force civil engineers are assigning SCIs of up to 86 

for systems that soon after fail. 

 

 

Figure 49: HVAC SCI Model 

 

  SCI Predicted State    

  Failed Not Failed    

Truth State 
Failed 201 149 350 CIf =  86 
Not Failed 178 172 350 p-value =  0.095 

  379 321 700 odds ratio = 1.303 

Figure 50: HVAC SCI Model (CIf = 86) 
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In addition to analyzing the SCI model against system attributes, this research 

sought to understand the performance of the model when considering systems at 

individual installations.  Table X displays the results for the SCI model for HVAC 

systems at each installation.  Five out of the six installations displayed areas of positive 

agreement.  Three of which (Davis Monthan AFB, Keesler AFB, and Patrick AFB) 

displayed statistically significant agreement at or near 86, the reliability threshold noted 

when considering all systems in Figure 49.  Additionally, the systems at these 

installations showed relatively consistent performance when considering multiple system 

attributes. 

Cannon AFB and Scott AFB displayed consistent agreement across multiple 

attributes, but at substantially different reliability thresholds.  Cannon AFB displayed 

statistically significant agreement at a threshold of 91 while Scott AFB displayed 

statistically significant agreement at a threshold of 71.  This suggests that the installation 

under consideration can have an effect on the appropriate reliability threshold for a 

system. 
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Table 11: SCI Model performance for HVAC systems by installation 

  CIf P-
value 

Odds 
ratio 

Suitability 

Cannon         
All Facilities 91 0.10 1.95 Greater positive detections to false 
Fac Age 20-40 yrs 91 0.11 Inf Large number of false positives 
Syst Age 0-20 yrs 91 0.02 2.37 Greater positive detections to false 

Davis Monthan         
All Facilities 86 0.12 1.92 Greater positive detections to false 
Fac Age 20-40 yrs 86 0.09 2.96 Greater positive detections to false 

Keesler         
All Facilities 85 0.04 3.91 Greater positive detections to false 
>7 Component Section 86 0.06 5.15 Greater positive detections to false 
Fac Age 0-40 yrs 86 0.02 6.92 Greater positive detections to false 
Syst Age 0-20 yrs 85 0.02 5.98 Greater positive detections to false 

Patrick         
Sq Ft > 14.6K 89 0.06 4.17 Greater positive detections to false 
Syst Age 0-20 yrs 85 0.11 1.72 Greater positive detections to false 

Scott         
Sq Ft > 2.6K 71 0.05 2.81 Greater positive detections to false 
>7 Component Section 67 0.07 6.19 Large number of false negatives 
Syst Age 0-20 yrs 71 0.04 4.06 Greater positive detections to false 

 
 
 
SCI Model Performance Summary 

The SCI model displayed statistically significant agreement with the truth state at 

reliability thresholds of 55, 66, and 86.  When analyzing the contingency tables at 

thresholds of 55 and 66, the model predicted numerous false negatives indicating these 

may not be accurate threshold values.  However, the model consistently shows statistical 

agreement with the truth state at a reliability threshold of 86.  When analyzed at 86, the 

model consistently presented more positive detections than false detections suggesting 86 

as more accurate reliability threshold.  Similar to the PoF model, a threshold this high 
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indicates the SCI model is likely overestimating HVAC system reliability.  Additionally, 

the results of Table 11 suggest the installation under consideration may have an impact as 

to what reliability threshold is appropriate for a system. 

Model Accuracy Assessment  

This section will present the data, results, and discussion associated with 

assessing the accuracy of the PoF and SCI models via a Non-homogeneous Poisson 

Process in conjunction with the Availability Growth Model. 

Failure Data 

This research utilized two data sets when analyzing the PoF model accuracy.  In 

the first stage of this analysis this research used HVAC failure data from the six 

previously mentioned Air Force installations.  This research captured HVAC system 

failures via IWIMS work orders from calendar year 2013 and 2014.  

Table 12 displays the total number of failures per year, per installation.  The 

following results will show that this data set was deemed unsuitable thus requiring a 

second data set.  The second data comprised solely of HVAC failures from Cannon Air 

Force Base, dating back to 1995.  The primary intent for developing a new data sat was to 

collect HVAC failures over a system’s lifetime in contrast to only a 2 year period.  

Therefore, due to the IWIMS data dating back to 1995, facilities constructed prior to this 

year were not considered.  This research randomly selected 30 facilities constructed on or 

after 1995.  In order to capture additional “older” facilities that could offer more lifetime 

data, the sample was ultimately increased to 33 systems.  Appendix D displays the failure 

data collected for these facilities. 
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Table 12: PoF Model Accuracy Assessment Data Summary 

Installation 2013 2014 Total 
Barksdale 99 62 161 
Cannon 71 181 252 
Davis Monthan 84 113 197 
Keesler 44 31 75 
Patrick 140 251 391 
Scott 125 230 355 

Total 563 868 1431 
 
 
 

Results 

The initial assessment for determining if the data fit a nonhomogeneous process 

was a visual check using Duane plots.  The system under consideration likely followed a 

NHPP with a power-law intensity function if the cumulative mean time between failure 

(MTBF) versus failure time displayed a linear tend.  This research began this portion of 

analysis by assessing the Duane plots of the data presented in Table 12.  Figure 51 

presents the plot for this data set and displays a mostly linear trend from 0-7000 days (0-

19 years), at which the cumulative MTBF sharply increases into a secondary linear trend.  

This research concluded that the shift in trend was likely due to truncated failure data.  

Truncation occurs when observations outside a particular range are not known (Meeker & 

Escobar, 1998).  In this case, truncation occurred because failure events outside of 2013 

and 2014 were not know.  This research noticed similar trends in all six installations.  

Appendix E displays similar plots to Figure 51 for all six installations individually. 
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Figure 51: HVAC Duane plot for all installations (CY13/14 failures) 

 

To overcome the perceived issues with truncated failure data, this research 

adjusted failure times by counting the time to failure from the beginning of the window in 

which data was collected.  In other words, Figure 51 displays failure times counted from 

when a system was placed into operation while Figure 52 displays data with failure times 

counted from January 1, 2013.  This correction resulted in a plot that displayed s 

somewhat linear trend.  This research assesses the goodness of fit via the Cramer-von 

Mises test statistic.  Table 13 displays the results, highlighting that the resulting test 

statistic is well above the critical value at a significance level of 0.10, thus rejecting the 

null hypothesis that data fit a NHPP with power-law intensity function.  This research 

obtained critical values for the Cramer-von Mises test statistic from Military Handbook 

189 (Department of Defense, 1981). 
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Table 13: Goodness of Fit results for truncation adjusted HVAC data 

N ࢼ෡ ࣅ෠ ࡹ࡯ 
૛ ࡹ࡯ 

૛  ࢚࢏࢘ࢉ
1423 1.6124 0.0344 4.201 0.173 
4.20 > 0.17, reject Ho of NHPP power-law intensity 

 
 
 

 

Figure 52: HVAC Duane plot for all installations (CY13/14 failures adjusted for 
truncation) 

 

Due to the inability to develop an availability growth model with the data 

presented above, this research limited its focus to HVAC systems at Cannon Air Force 

base in an effort to collect system lifetime failure data.  The data used for this portion of 

analysis is presented in Appendix D.  Beginning with visual assessment of the Duane 

plots, figures 53-54 present 12 of the 33 systems analyzed.  These figures help summarize 

the visual assessment and are used to describe the general theme for how the systems 

considered visually fit the NHPP.  Appendix F displays Duane plots for all 33 facilities. 

Of the 40 systems analyzed, Figure 53 presents six plots for the HVAC systems 

that displayed a good linear trend.  However, only four of the six systems in this figure 

pass the Cramer-von Mises goodness of fit test, displayed in Table 14.  Of the six plots, 
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five display deteriorating systems while the HVAC system in building 00208 displays a 

positive trend at roughly 600 days, indicating an improving system.   

Figure 54 displays additional facilities that show changes in trend from a 

deteriorating system to an improving system.  In this analysis, seven total systems 

displayed trend changes (00208, 01155, 01159, 01161, 02134, 02206, and 04081).  This 

research referenced BUILDER® inventory data to determine if possible component-

section replacement efforts could account for the system improvement and ultimately 

found no information to suggest this.  If there were data to suggest component-section 

replacement affected the MTBF, this research could have assessed the systems fit to a 

NHPP after the replacements were made.  However due to the lack of data to suggest the 

change in trend was the cause of a replacement effort, this research could not reasonably 

exclude data prior to trend change.  Overall, of these seven systems only three (00208, 

02134 and 04081) pass the Cramer-von Mises test statistic suggesting that the remaining 

four systems do not follow a NHPP. 

Appendix F displays the remainder of the Duane plots for the systems analyzed 

by this research.  The majority of these plots either display no linear trend or comprise of 

only 2-3 data points, thus making it difficult to make a declaration as to the visual fit of 

the system.  Table 14 displays the parameters and goodness of fit results for all 40 

systems analyzed.  Of the 40 systems only 20 pass the Cramer-von Mises test statistic 

satisfying the null hypothesis that the HVAC systems analyzed fit a NHPP.  Due to this 

low level of agreement, this research concludes that fitting HVAC systems to a NHPP 

with power-law intensity is not effective for estimating the MTBF, thus could not 

accurately calculate a measure of system reliability via this method. 
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Figure 53: Duane plots displaying good fit 
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Figure 54: Duane plots displaying changing trends 
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Table 14: Parameter and Goodness of Fit Results 

Bldg System Age N(t) ࢼ෡ ഥࢼ ෠ࣅ ۻ۱
૛ ۻ۱

૛  MTBF(t) ܚ܋	
128 13 12 1.417 1.299 7.82E-05 0.033 0.169 268.278 
158 12 17 1.916 1.804 1.94E-06 0.048 0.171 128.849 
724 5 13 1.417 1.308 3.60E-04 0.060 0.169 89.184 
575 11 7 2.084 1.786 2.39E-07 0.061 0.165 262.762 
300 17 16 1.939 1.818 7.52E-07 0.061 0.171 194.156 
2370 6 3 2.272 1.515 9.39E-08 0.071 0.155 294.492 
777 3 2 1.917 0.959 4.22E-06 0.086 0.162 237.946 
2371 4 3 3.599 2.400 1.98E-11 0.089 0.155 118.308 
1435 5 7 2.299 1.971 2.83E-07 0.089 0.165 102.058 
4609 2 2 1.251 0.626 7.50E-04 0.095 0.162 218.762 
2134 20 10 0.911 0.820 3.10E-03 0.105 0.167 781.339 
4605 4 6 1.324 1.103 4.60E-04 0.107 0.162 160.858 
848 3 5 1.735 1.388 3.66E-05 0.113 0.160 105.209 
2220 12 2 2.306 1.153 8.80E-09 0.122 0.162 909.937 
4081 18 7 0.754 0.646 9.45E-03 0.136 0.165 1209.951 
4607 3 5 2.890 2.312 1.39E-08 0.136 0.160 63.153 
234 4 2 2.088 1.044 6.53E-07 0.137 0.162 305.903 
4606 3 6 1.741 1.451 4.22E-05 0.147 0.162 87.370 
2320 19 5 0.905 0.724 1.72E-03 0.147 0.160 1492.994 
208 21 25 0.689 0.661 5.37E-02 0.162 0.172 434.557 

4624 3 11 1.807 1.643 4.92E-05 0.170 0.169 45.907
850 9 3 1.819 1.212 1.34E-06 0.186 0.154 568.615 
251 20 2 0.578 0.289 1.19E-02 0.188 0.162 6157.626 
2379 5 4 5.512 4.134 7.57E-18 0.219 0.155 74.499 
1275 2 3 2.450 1.633 5.87E-07 0.221 0.154 74.492 
4623 2 6 4.003 3.336 6.53E-11 0.359 0.162 22.793 
4619 2 4 5.880 4.410 3.16E-16 0.384 0.155 23.277 
4620 2 5 5.816 4.653 5.93E-16 0.385 0.160 18.828 
1161 17 19 0.516 0.488 2.14E-01 0.425 0.171 614.809 
356 19 9 0.477 0.424 1.34E-01 0.618 0.167 1572.643 
1155 20 39 1.043 1.016 3.75E-03 0.629 0.172 174.994 
1159 20 31 0.703 0.681 6.06E-02 0.832 0.172 326.508 
355 18 20 0.446 0.424 4.02E-01 0.988 0.171 716.364 
2206 21 34 0.767 0.744 3.64E-02 1.197 0.172 287.061 
278 5 1 * Only a single failure for the given system.  Parameter 

estimation/goodness of fit not computed. 307 6 1 
1825 6 1 
4082 18 1 
173 6 1 
1824 6 1 
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Summary 

This chapter presented results and analysis associated with the performance of the 

Probability of Failure (PoF) model and the BUILDER® SCI model.  Some findings 

associated with the two models indicate that different systems may possess different 

reliability thresholds.  Additionally, the analysis shows that both models present a high 

number of false negatives when assessed for statistical significance via contingency 

analysis.  Initially, this research attempted to utilize an accepted method for calculating 

reliability for repairable systems as a means to determine the accuracy of both models.  

However, given amount of false negatives this research attempted to present an 

Availability Growth Model using the Nonhomogeneous Poisson Process (NHPP) as an 

alternate to the PoF and SCI model.  Ultimately the research concluded that a NHPP 

model was not effective for assessing HVAC systems and was unable to construct an 

Availability Growth Model. 

  



 

93 

V.  Discussion and Conclusion 

Chapter Overview 

This chapter provides a discussion of the results of this research and answers the 

research questions presented in Chapter I.  The chapter then discusses limitations 

associated with the research effort.  Further, this chapter places the findings within the 

context of infrastructure asset management within the Air Force.  Lastly, this chapter 

presents recommendations for future research efforts. 

Discussion 

The PoF Model 

When considering the PoF model, there is evidence to suggest that different 

systems have different reliability thresholds.  As displayed in Figure 19 the model 

prediction for the plumbing system shows statistically significant agreement between the 

truth state and the model results at a reliability range of 70-85.  Additionally, Figure 18 

displays the same agreement for the fire protection system at a threshold of 50.  These 

results suggest that a single reliability threshold of 37 may not be applicable for all 

systems.  If using the PoF model to predict failure, infrastructure managers should expect 

to see system failures for plumbing systems when the system has a calculated reliability 

between 70-85.  Similarly, infrastructure managers should expect to see system failures 

for fire protection at calculated reliability of 50.  Unfortunately, this research can not 

make any assertions with respect to an appropriate reliability threshold for the electrical 

system based on the PoF model.  Figure 17 displays the performance of the PoF model 

with respect to the electrical system.  While there are areas where the model prediction 
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does begin to show agreement with the truth state, it is not at the statistical significance 

necessary for this research.  At best, the PoF model displays a statistical significance of 

0.5 for the electrical system.  Indicating the dependence between the model state and 

truth state is roughly the equivalent of a coin toss. 

When analyzing the PoF model with respect to HVAC systems, the model 

displays no agreement with the truth state when considering small to medium-sized 

facilities.  However, the model does display agreement with the truth state at reliability 

thresholds of 35 and 77 when assessed against larger facilities (i.e. ≥ 15,000 square feet, 

≥ 7 component-sections, ≥ 3 stories).  The model also displays agreement at thresholds of 

91.5 and 92.5 when assessed against system age.  However, because of the large number 

of false detections associated with thresholds of 35 and 92.5, this research deems 77 and 

91.5 as more likely reliability threshold for the PoF model.  This indicates that 

infrastructure managers should expect to see system failures when systems in larger 

facilities and systems in facilities 0-9 years old have calculated reliabilities of 77 and 91.5 

respectively. 

Overall, the agreement of the PoF model with the truth state is sporadic and 

displays a large number of false negative when assessed at lower thresholds.  The 

combination of the significant agreement at thresholds of 77 and 91.5 and the numerous 

false negative detections at lower thresholds lead this research to conclude that the PoF 

model is overestimating HVAC system reliability.  This research proposes three possible 

reasons for this: the Ordered Weighted Averaging method is not an appropriate method 

for “rolling-up” system reliability, the weights used to construct the model are incorrect, 

and the assumption made for selecting a distribution and parameters for these 
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distributions result in overestimated component reliability.  This research believes the 

latter of the three is most likely.  The PoF model uses an assumption of a “70-30” 

Weibull distribution for the component-sections.  This assumption parameterizes the 

distributions to have only a 30% reliability drop over the first 70% of the component-

section’s life.  This would account for somewhat aged component-sections retaining a 

fairly high reliability, resulting in a higher system level reliability.  Unfortunately, Air 

Force civil engineers are not currently collecting failure data at the detail necessary to fit 

failure distributions at the component-section level. 

The SCI Model 

Shifting attention to the SCI model performance with respect to HVAC systems, 

the SCI consistently displays statistically significant agreement with the truth state at a 

reliability threshold of 86.  This is well above the current reliability threshold of 37.  

When analyzed in a similar fashion to the PoF model, the SCI model also displays 

agreement at a threshold of 55 for larger facilities.  However, at this threshold the model 

displays a large proportion of false negatives.  The numerous false negatives combined 

with statistically significant agreement at 86 lead to the conclusion that the SCI model is 

also overestimating system reliability.  This research proposes two possible reasons for 

this: the “roll up” model using Current Replacement Value (CRV) is an inappropriate 

method for calculating higher reliabilities or the component-section condition assessment 

process is not accurate.  This research believes it is likely a combination of the two.   

In system reliability analysis, the system failure probability is a function of the 

system structure and system component reliability (Meeker & Escobar, 1998).  

Reliability block diagrams (RBDs) and fault trees are often used to quantify the 
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relationships between system components in order to accurately model the system 

structure (Labi, 2014; Meeker & Escobar, 1998).  The SCI roll-up method is purely a cost 

model and does not quantify the relationships and interactions of lower level components 

and component-sections to the overall system.  Additionally, the majority of condition 

assessments completed by Air Force civil engineers are direct rating assessments.  While 

these assessments decrease the time and resources required to assess condition, they are 

inherently more subjective and may be unintentionally reporting an inflated component-

section condition.  This may lead to inaccurate measurements of lower level component 

reliability.  This research concludes that these two issues combined contribute to the 

overestimating of the SCI model.  

Shiny© Application and Data Analysis 

This research completed the above assessments of the PoF and SCI model through 

the use of Shiny©, a web application for R statistical software.  Constructed and 

customized specifically for this research effort, the Shiny© application allowed for the 

creation and manipulation of system attribute filters in order to determine if the models 

performed differently given a specific attribute.  The application also allowed for the 

adjustment of attribute values.  For instance, this research noted no agreement between 

the PoF model and truth state for HVAC systems over the entire range of facility sizes.  

However, when limited to facilities ≥ 15,000 square feet, the model displayed statistically 

significant agreement.  Using attribute data, this research developed attribute “filters” for 

facility size, facility age, system age, number of floors, and number of unique 

component-sections.  The capability to select and manipulate attribute data and receive 

graphical output was instrumental to the analysis in this research. 
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A fundamental benefit of Shiny© is that it pairs the data analytics and tools of R 

statistical software with a customizable, user friendly graphical user interface.  Users can 

decide what data to bring in and how to analyze it.  The output of the application is also 

customizable and can be tailored to meet the needs of the user.  Given a problem of 

interest, a data set, and an idea of how to obtain information from that data, users can 

perform instantaneous data analysis that meets their specific need.  Proving its utility in 

reliability analysis in this research, a Shiny© application could be tailored to meet the 

needs of almost any data analysis or data presentation needs. 

Alternative Reliability Model 

Finally, this research attempted to employ an alternative method of measuring 

reliability with the intention of assessing the accuracy of both the PoF and SCI model 

output.  While the method did not prove effective for the systems analyzed, this research 

believes future efforts should focus on modeling system reliability via a stochastic 

process using failure data.  This research shows that both the PoF and SCI model 

overestimate HVAC system level reliability and cannot accurately assess the probability 

of a system being in a failed state.  

System Reliability Theory, as discussed by Høyland and Rausand (1994), presents 

statistical models to calculate system reliability using failure data.  One such model is the 

Markov process which estimates the probability of a system being in a particular state by 

modeling the transitions from state to state (Høland & Rausand, 1994).  In a Markov 

process, the assumption is that all transitions follow an exponential distribution (Meeker 

& Escobar, 1998).  This research achieved preliminary reliability calculations using a 

finite state Semi-Markov process (SMP) as discussed by Warr (n.d.).  SMPs relax the 
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exponential transition state assumption, allowing modelers to assess the fit of other 

distributions.  Because of the preliminary nature of these results, this research did not 

present them in Chapter IV.  Readers may view an overview of the SMP method and 

preliminary results in Appendix G.  

Review of Research Questions 

The primary purpose of reliability analysis is to provide information for use in 

decision making.  The decision application can vary from risk and safety analysis, 

maintenance and operation analysis, to engineering design (Høland & Rausand, 1994).  

Alley (2015) developed the PoF model in an attempt to improve the SCI model and 

improve the decision making capability of Air Force civil engineers with respect to 

Infrastructure Asset Management.  This research attempted to validate and improve the 

PoF model by answering the following questions: 

1. What assumptions associated with the original research effort can be reduced or 
eliminated through data collection and analysis? 

 
a. Is the assumption that a reliability threshold of 37 valid for the systems analyzed?  

If not, does the model indicate a reliability threshold for these systems?  
 

Of the systems analyzed with the PoF model, HVAC systems displayed possible 

reliability thresholds at 77 and 91.5.  With the combination of these large values and 

numerous false negative detections, this research posits that the PoF model may be 

overestimating HVAC system reliability.  However, PoF model did suggest that different 

systems have different reliability thresholds.  The results suggest the plumbing system 

and fire protection system have reliability thresholds of 70 and 50 respectively based on 

the statistically significant agreement between the failed state model predictive state.  
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This indicates that system failures should be noticed when a system has calculated 

reliability at or near their respective threshold. 

Additionally, when analyzing the SCI model, this research suggests that using a 

reliability threshold of 37 for HVAC systems is not appropriate for the current model 

configuration.  With its current configuration, the SCI model displays a reliability 

threshold of 86 for all HVAC systems based on the statistically significant agreement 

between the failed state and model predictive state.  Similar to thresholds discussed 

above, system failures should be noticed when a system has calculated reliability at or 

near this threshold. 

 
b. Can probabilistic distributions and associated parameters be estimated for 

system components? 
 

Yes, understanding component probabilistic distributions along with system 

structure is a general requirement for understanding system reliability (Meeker & 

Escobar, 1998).  The aircraft, automotive, electronic, and many other sectors collect 

multiple levels of failure data to improve the reliability of their systems or products. 

Unfortunately, the Air Force does not currently collect data at the level of detail 

necessary to obtain failure data below the system level.  The Air Force currently collects 

condition data at the component-section level as a means to estimate the reliability of 

those component-sections.  If the Air Force desires to more accurately assess reliability 

using stochastic processes, it must collect more detailed component-section data. 
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2. After further model validation, does the model still present statistical significance 
for predicting the probability of failure at the system level? 

 
Yes, both the PoF and SCI model output present statistical significant agreement 

with the truth state.  However, statistical significance alone does not indicate sound 

model performance.  Both models display signs of overestimating system reliability. 

3. After further model validation, does the model accurately predict the probability 
of failure at the system level? 

 
Although this research was unable to precisely assess the accuracy of the PoF and 

SCI model via comparison to a stochastic model, it is able to make some declarations 

about the accuracy of the models.  Both models predicted a large number of false 

negatives and show signs of overestimating, leading this research to conclude that each 

model is producing inaccurate results for some systems.   

4. Can alternative methods be used to assess system reliability for Air Force civil 
infrastructure systems? 
 

Yes.  The use of availability as a measure for reliability for repairable systems 

remains a viable method as annotated by reliability literature (Høland & Rausand, 1994; 

Limnios, 2011; Meeker & Escobar, 1998).  Additionally, Labi (2014) and Meeker and 

Escobar (1998) discuss the use of system structure diagrams combined with component 

reliability calculations as a method for calculating system reliability.  While the 

development of an Availability Growth Model using a Nonhomogeneous Poisson Process 

was not an effective method for the systems considered in this research, this research 

achieved preliminary results using a finite state Semi Markov Process (SMP).  The SMP 

method could be employed with reliability methods discussed in the literature to calculate 

system reliability for Air Force civil infrastructure systems. 
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Research Limitations 

This research focused on providing an objective assessment of current and 

available methods for calculating the reliability of Air Force civil infrastructure systems.  

As with any research effort, it is important to consider the results presented in 

conjunction with the limitations of the research.  This section focuses on limitations 

associated with method selection, data, and applicability of results. 

With respect to the method selected, the Nonhomogeneous Poisson Process 

(NHPP) required an assumption that the systems under consideration received “as bad as 

old” maintenance when a failure was observed.  Prior to data analysis, this research 

deemed this assumption valid with respect to the maintenance strategy for the systems 

considered.  After analyzing the data, this assumption appeared to lose its validity as 

repair actions were noted to improve the performance of some systems.  While a 

limitation of this research, highlighting that this assumption and the NHPP process are 

not effective for analyzing HVAC systems eliminates a method of analysis and narrows 

the focus of future research. 

With respect to the data selected, this research aspired to obtain objective, 

representative data.  Considering failure data, the Air Force does not actively collect 

system failure data but, however, does collect civil infrastructure repair work order (WO) 

data.  Based on indicators in the WO data, this research made assumptions as to which 

WOs represented a system level failure.  The research focused on being as objective as 

possible when identifying failures, however some subjectivity is present when 

determining which WOs indicated a system level failure.  Developing an objective way to 

identify and quantify system failure in Air Force civil infrastructure is offered as a focus 
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for future research.  Having access to such data will only improve efforts to understand 

civil infrastructure reliability. 

Shifting focus to obtaining representative data, based on the detail of data 

collected, this research was not able to determine if the non-failed samples for the 

electrical, fire protection, and plumbing systems were a representation of the non-failed 

population.  This presents a limitation when applying the results of the analysis for those 

systems. 

Lastly, the intent of this research was to improve the understanding of reliability 

for civil systems across the population of the Air Force infrastructure.  A limitation 

associated with this research was the availability of BUILDER® data.  BUILDER® 

inventory data was fundamental to this research.  This research selected installations for 

data collection based on the quality and availability of their BUILDER® inventory data.  

The result of this selection was a sample of installations in hot and humid and hot and dry 

climates and thus the results are more applicable to systems in these environments.  To 

improve the applicability of these results, a more representative sample of installations 

should be selected. 

Implications for Air Force Asset Management 

Air Force civil engineers currently utilize the BUILDER® model to assess risk 

associated with the Air Forces civil infrastructure and prioritize resources according the 

assessed risk.  The fundamental elements of risk are: identifying a possible hazard, 

understanding the consequences of the hazard, and understanding the likelihood of the 

hazard (Ezell, Farr, & Wiese, 2000; Kaplan & Garrick, 1981; Singh et al., 2007).  
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Remembering that reliability is the mathematical compliment of the probability of failure, 

BUILDER® quantifies the probability of failure in the Air Force Asset Management risk 

model (Air Force Civil Engineer Center (AFCEC), 2015). 

 

Figure 55: Air Force Risk Model Example (Air Force Civil Engineer Center (AFCEC), 
2015) 

 

Unfortunately, this research concludes that the BUILDER® model may not be 

providing an accurate assessment of the probability of failure at the system level.  Air 

Force civil engineers are directed to manage their assets in a way that effectively support 

the Air Force mission and minimize asset life cycle cost (Office of the Secretary of the 

Air Force, 2010).  The achievement of these two directives relies heavily on being able to 

accurately quantify the probability of failure for a given asset.  Air Force civil engineers 

cannot understand how effectively an asset is supporting the mission if they cannot 

accurately quantify reliability.  Additionally, Air Force civil engineers cannot effectively 

manage life-cycle spending if the model used to allocate resources relies on an inaccurate 
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reliability calculation.  Given their current asset management methods, asset reliability 

calculation is something Air Force civil engineers cannot afford to get wrong. 

In order to improve the accuracy of Air Force civil engineer reliability analysis, 

this research believes Air Force civil engineers need to establish and quantify the 

relationship between the BUILDER® condition indices and asset failure.  Traditional 

reliability analysis focuses on preventing failures (Høland & Rausand, 1994).  The first 

step to preventing a failure is to identify it and then seek to understand how and why it 

occurred; after which, reliability analysts can assess the effectiveness of improvement 

efforts and provide reliability calculations based on the failure data collected.  Air Force 

civil engineers are not collecting failure data at the detail necessary to make accurate 

reliability calculations.  Collecting more detailed failure data would allow engineers to do 

two things: (1) understand the relationship between asset condition and asset failure and 

(2) use the data to construct more accurate stochastic based reliability models.  The 

discussion of failure data and stochastic based reliability models lends as a useful 

transition to recommendations for future research. 

Recommendations for Future Research 

This section will present topics for future research in civil infrastructure 

reliability.  While not an exhaustive list, this research regards data and methods as 

important focus areas for improving system reliability calculations for Air Force civil 

infrastructure.  This section discusses the use of failure mode and effects analysis as 

possible way to improve failure data and understating.  Additionally, this section 
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introduces finite state Semi Markov Processes as an alternative method for calculating 

repairable system reliability. 

Failure Data 

How would Air Force civil engineers begin to understand failure and collect 

failure data?  One approach is failure mode and effects analysis (FMEA).  FMEA was 

one the first organized techniques for failure analysis and serves as a basis for 

quantitative reliability and availability analysis (Høland & Rausand, 1994).  FMEA is a 

detailed analysis that reliability analysts can use at the system, subsystem, or component 

levels to identify the modes (or events) which cause an asset’s functional failure.  This 

level of analysis could prove a daunting task as a single asset can have numerous failure 

modes (Moubray, 1997).  However, Moubray (1997) argues that daily maintenance is 

managed at the failure mode level.  That is to say, that work orders logged into the 

interim work order management system (IWIMS) are the result of a failure mode.  To 

begin collecting data against these failure modes requires only working through the 

FMEA process.  Having access to the detailed data that would result from a FMEA would 

greatly enhance the accuracy of Air Force civil engineer reliability analysis.  For an 

introduction and detailed overview of the FMEA process, see Høland and Rausand 

(1994) and Moubray (1997) respectively. 

Stochastic Reliability Models 

The second phase of this research attempted to construct a stochastic reliability 

model using a NHPP.  The NHPP method did not prove effective to the systems 

analyzed.  However, this research posits that assessing reliability via a stochastic process 

will yield the most accurate reliability calculations for Air Force civil systems.  This 
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research began preliminary reliability analysis using a finite state Semi-Markov process 

(SMP).  This method used data to model inter arrival times between failures and calculate 

reliability estimates using an algorithm developed by Freels and Warr (2015).  Appendix 

G provides a methodological overview and preliminary results.  Based on the initial 

success of the SMP method, this research believes that further analysis is warranted to 

assess its applicability in Air Force civil engineering reliability analysis. 

Conclusions 

Air Force civil engineers are focused on providing civil infrastructure that both 

effectively supports the Air Force mission and provides service at the lowest life cycle 

cost.  With emphasis on effective mission support, Air Force civil engineers have 

implemented a measure of reliability through BUILDER® to monitor and predict 

infrastructure performance.  The intent of this research was to validate reliability models 

currently used and available to Air Force civil engineers and further the field of reliability 

analysis with respect to repairable civil infrastructure systems.  Ultimately focusing on 

HVAC systems, this research determined that both the PoF and SCI models frequently 

over estimate system reliability, resulting in a larger proportion of false negative 

detections.  This result suggests that Air Force civil engineers cannot accurately asses the 

reliability and performance of some systems.  This impairs their ability to effectively 

manage civil infrastructure that provides effective mission support at the lowest life cycle 

cost.   

In an attempt to improve reliability calculations for repairable civil systems, this 

research proposed the use of an Availability Growth Model using a Nonhomogeneous 
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Poisson Process (NHPP).  However, the NHPP method proved ineffective for modeling 

HVAC systems.  Nevertheless, this research recommends exploration of other stochastic 

methods to assess civil system reliability.  There are numerous methods available in 

reliability analysis.  Given the right application, these methods have the potential to 

improve reliability calculations for Air Force civil engineers and help them more 

effectively manage their civil infrastructure assets. 
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Appendix A. PoF Model Calculation Output 

Barksdale AFB 
HVAC Failed HVAC Non-Failed 
Fac Nmbr SCI R(t) Pf(t) Fac Nmbr SCI R(t) Pf(t) 
1955 81 0.420 0.580 3435 93 0.806 0.194
2914 75 0.634 0.366 3722 72 0.564 0.436
2945 83 0.481 0.519 3725 87 0.843 0.157
3433 85 0.487 0.513 3800 92 0.700 0.300
3578 93 0.786 0.214 4030 85 0.280 0.720
3723 90 0.998 0.002 4168 74 0.467 0.533
4145 78 0.642 0.358 4173 49 0.362 0.638
4161 95 0.946 0.054 4186 80 0.578 0.422
4221 51 0.120 0.880 4359 88 0.354 0.646
4223 85 0.579 0.421 4543 72 0.788 0.212
4351 78 0.836 0.164 4549 87 0.886 0.114
4560 36 0.661 0.339 4631 86 0.705 0.295
4565 92 0.615 0.385 5755 92 0.590 0.410
4714 76 0.704 0.296 5821 23 0.000 1.000
5141 86 0.522 0.478 5821 86 0.763 0.237
5155 87 0.944 0.056 5822 86 0.720 0.280
5441 84 0.879 0.121 6064 48 0.569 0.431
5650 84 0.504 0.496 6200 93 0.842 0.158
5999 93 0.510 0.490 6249 69 0.567 0.433
6067 85 0.419 0.581 6442 93 0.306 0.694
6225 93 0.847 0.153 6626 78 0.600 0.400
6238 91 0.913 0.087 6803 93 0.619 0.381
6402 92 0.899 0.101 6803 55 0.573 0.427
6412 95 0.520 0.480 6824 61 0.215 0.785
6413 90 0.854 0.146 6824 89 0.652 0.348
6603 93 0.949 0.051 6825 84 0.529 0.471
6604 94 0.442 0.558 682 90 0.572 0.428
6809 88 0.863 0.137 6830 88 0.633 0.367
6815 93 0.737 0.263 6836 90 0.817 0.183
6819 91 0.539 0.461 7236 90 0.344 0.656
7251 96 0.793 0.207 7243 98 0.986 0.014
7282 84 0.635 0.365 7274 50 0.464 0.536
7305 91 0.676 0.324 7280 51 0.349 0.651
7306 92 0.725 0.275 7297 90 0.546 0.454
7332 94 0.428 0.572 7574 92 0.734 0.266
7700 86 0.628 0.372 7625 87 0.503 0.497
7710 83 0.407 0.593 18383 86 0.437 0.563
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Electric Failed Electric Non-Failed 
Fac Nmbr SCI R(t) Pf(t) Fac Nmbr SCI R(t) Pf(t) 
2914 81 0.620 0.380 1080 94 0.955 0.045
2945 77 0.446 0.554 3435 92 1.000 0.000
3900 94 0.757 0.243 6215 90 0.765 0.235
5546 94 1.000 0.000 6809 90 0.855 0.145
6067 85 0.646 0.354 6810 62 0.149 0.851
6628 88 0.778 0.222 6830 48 0.268 0.732
7236 90 0.536 0.464 6836 87 0.783 0.217
7306 90 0.704 0.296 7332 64 0.471 0.529
7445 94 0.778 0.222 7411 10 0.084 0.916

Fire Protection Failed Fire Protection Non-Failed 
Fac Nmbr SCI R(t) Pf(t) Fac Nmbr SCI R(t) Pf(t) 
* Facility Data not available for failed systems 

Plumbing Failed Plumbing Non-Failed 
Fac Nmbr SCI R(t) Pf(t) Fac Nmbr SCI R(t) Pf(t) 
4565 92 0.688 0.312 5155 91 0.990 0.010
2914 78 0.698 0.302 6604 93 0.773 0.227
4631 91 0.831 0.169 5224 89 0.879 0.121
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Cannon AFB 

HVAC Failed HVAC Non-Failed 
Fac Nmbr SCI R(t) Pf(t) Fac Nmbr SCI R(t) Pf(t) 
1 85 0.3300 0.6700 9 77 0.6785 0.3215 
22 82 0.4559 0.5441 10 77 0.7035 0.2965 
54 87 0.3426 0.6574 74 89 0.5433 0.4567 
58 85 0.7979 0.2021 75 87 0.4332 0.5668 
60 76 0.9664 0.0336 78 87 0.9789 0.0211 
70 83 0.4867 0.5133 79 66 0.1663 0.8337 
76 83 0.5862 0.4138 106 86 0.2275 0.7725 
77 78 0.6181 0.3819 109 80 0.4578 0.5422 
102 86 0.8191 0.1809 124 90 0.5643 0.4357 
119 85 0.5620 0.4380 125 83 0.6848 0.3152 
122 85 0.4107 0.5893 128 88 0.9002 0.0998 
123 84 0.6477 0.3523 135 83 0.6544 0.3456 
126 81 0.5406 0.4594 173 93 0.9573 0.0427 
130 86 0.4450 0.5550 174 93 0.9659 0.0341 
133 86 0.5068 0.4932 192 93 0.7758 0.2242 
150 86 0.9071 0.0929 204 82 0.6903 0.3097 
155 91 0.7918 0.2082 206 87 0.6765 0.3235 
158 85 0.8335 0.1665 209 84 0.0891 0.9109 
160 86 0.8140 0.1860 212 86 0.4195 0.5805 
164 84 0.4768 0.5232 214 85 0.5943 0.4057 
186 83 0.9375 0.0625 215 86 0.8068 0.1932 
190 84 0.5627 0.4373 226 86 0.2001 0.7999 
194 91 0.6270 0.3730 229 92 0.9153 0.0847 
195 93 0.9170 0.0830 230 100 0.9987 0.0013 
196 91 0.6249 0.3751 250 92 0.9951 0.0049 
197 84 0.4243 0.5757 251 85 0.5472 0.4528 
198 75 0.7784 0.2216 252 72 0.6135 0.3865 
199 86 0.3759 0.6241 253 93 0.6026 0.3974 
208 90 0.9608 0.0392 269 93 0.9921 0.0079 
216 88 0.4974 0.5026 307 93 0.9875 0.0125 
219 85 0.2936 0.7064 317 93 0.9747 0.0253 
234 86 0.9982 0.0018 326 90 0.7104 0.2896 
300 86 0.6835 0.3165 337 79 0.1393 0.8607 
335 74 0.3570 0.6430 356 86 0.6880 0.3120 
379 88 0.3484 0.6516 368 67 0.7269 0.2731 
444 91 0.6593 0.3407 370 93 0.9963 0.0037 
550 86 0.4323 0.5677 374 56 0.6785 0.3215 
555 85 0.7626 0.2374 375 88 0.3234 0.6766 
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HVAC Failed HVAC Non-Failed 
Fac Nmbr SCI R(t) Pf(t) Fac Nmbr SCI R(t) Pf(t) 
593 87 0.9542 0.0458 442 77 0.0000 1.0000 
620 89 0.9511 0.0489 494 86 0.4609 0.5391 
622 86 0.9897 0.0103 575 74 0.8792 0.1208 
680 77 0.5383 0.4617 600 84 0.3997 0.6003 
684 84 0.7920 0.2080 622 86 0.9879 0.0121 
724 97 0.9975 0.0025 624 83 0.2922 0.7078 
777 100 0.9998 0.0002 626 78 0.6510 0.3490 
780 80 0.8880 0.1120 728 88 0.4908 0.5092 
785 88 0.4440 0.5560 772 81 0.6407 0.3593 
790 85 0.8075 0.1925 799 49 0.1882 0.8118 
850 92 0.9542 0.0458 1202 85 0.4115 0.5885 
1111 83 0.4903 0.5097 1265 100 0.9995 0.0005 
1155 84 0.7740 0.2260 1398 86 0.0550 0.9450 
1156 89 0.6342 0.3658 1825 93 0.9820 0.0180 
1159 87 0.9046 0.0954 1898 86 0.0460 0.9540 
1161 86 0.7995 0.2005 2112 83 0.1094 0.8906 
1208 86 0.4737 0.5263 2123 83 0.4080 0.5920 
1225 91 0.9874 0.0126 2207 86 0.0550 0.9450 
1254 86 0.3960 0.6040 2209 100 0.9977 0.0023 
1275 100 1.0000 0.0000 2214 86 0.2240 0.7760 
1404 77 0.3245 0.6755 2220 76 0.8525 0.1475 
1435 99 0.9959 0.0041 2280 67 0.0004 0.9996 
1812 81 0.5859 0.4141 2302 82 0.6316 0.3684 
1816 86 0.4987 0.5013 2304 85 0.0892 0.9108 
1818 86 0.5548 0.4452 2306 94 0.9977 0.0023 
1819 87 0.6042 0.3958 2311 92 0.9153 0.0847 
1820 85 0.6193 0.3807 2315 84 0.5709 0.4291 
1824 93 0.9859 0.0141 2332 84 0.0001 0.9999 
1900 81 0.5657 0.4343 2347 93 0.9921 0.0079 
2110 86 0.1354 0.8646 2348 93 0.9859 0.0141 
2132 86 0.5014 0.4986 2349 97 0.9956 0.0044 
2206 83 0.4354 0.5646 2371 92 0.9977 0.0023 
2320 81 0.5234 0.4766 2372 90 0.9908 0.0092 
2328 96 0.9910 0.0090 2380 100 1.0000 0.0000 
2370 89 0.9803 0.0197 3107 86 0.0177 0.9823 
2379 93 0.9989 0.0011 3252 93 0.9859 0.0141 
4081 90 0.3295 0.6705 4082 90 0.5188 0.4812 
4605 93 0.9980 0.0020 4083 94 0.0321 0.9679 
4606 97 0.9997 0.0003 4619 100 1.0000 0.0000 
4607 100 0.9995 0.0005 4620 98 1.0000 0.0000 
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HVAC Failed HVAC Non-Failed 
Fac Nmbr SCI R(t) Pf(t) Fac Nmbr SCI R(t) Pf(t) 
4609 100 1.0000 0.0000 355 84 0.7699 0.2301 
4623 100 1.0000 0.0000 2300 78 0.5243 0.4757 
4624 100 0.9997 0.0003 2318 76 0.5201 0.4799 

Electric Failed Electric Non-Failed 
Fac Nmbr SCI R(t) Pf(t) Fac Nmbr SCI R(t) Pf(t) 
196 92 0.6063 0.3937 103 93 0.9867 0.0133 
444 92 0.5687 0.4313 122 92 0.3613 0.6387 
679 91 0.3976 0.6024 197 93 0.3911 0.6089 
680 77 0.1705 0.8295 214 93 0.7336 0.2664 
772 87 0.8551 0.1449 326 94 0.5147 0.4853 
1275 100 1.0000 0.0000 356 92 0.5972 0.4028 
2209 99 0.9317 0.0683 374 93 0.2932 0.7068 
2300 86 0.4820 0.5180 1156 86 0.7755 0.2245 
2379 93 0.9940 0.0060 2220 92 0.9003 0.0997 

Fire Protection Failed Fire Protection Non-Failed 
Fac Nmbr SCI R(t) Pf(t) Fac Nmbr SCI R(t) Pf(t) 
4081 100 0.9999 0.0001 10 83 0.9416 0.0584 

Plumbing Failed Plumbing Non-Failed 
Fac Nmbr SCI R(t) Pf(t) Fac Nmbr SCI R(t) Pf(t) 
126 77 0.8340 0.1660 102 94 0.984 0.016 
130 94 0.9316 0.0684 123 90 0.700 0.300 
684 92 0.6856 0.3144 124 87 0.735 0.265 
785 86 0.8741 0.1259 206 91 0.973 0.027 
799 89 0.7018 0.2982 356 94 0.783 0.217 
850 92 0.9470 0.0530 371 94 0.996 0.004 
1435 99 0.9948 0.0052 442 92 0.992 0.008 
2328 99 0.9982 0.0018 4607 100 1.000 0.000 
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Davis Monthan AFB 

HVAC Failed HVAC Non-Failed 
Fac Nmbr SCI R(t) Pf(t) Fac Nmbr SCI R(t) Pf(t) 
63 78 0.4037 0.5963 38 95 0.3582 0.6418 
70 75 0.8243 0.1757 73 40 0.5633 0.4367 
74 79 0.8058 0.1942 79 76 0.2001 0.7999 
75 66 0.7209 0.2791 129 61 0.5599 0.4401 
96 78 0.4710 0.5290 137 95 0.4757 0.5243 
113 66 0.2639 0.7361 142 73 0.3542 0.6458 
211 84 0.1370 0.8630 165 71 0.9964 0.0036 
220 89 0.8617 0.1383 171 95 0.9720 0.0280 
265 93 0.9936 0.0064 173 84 0.9594 0.0406 
304 95 0.8525 0.1475 182 90 0.0000 1.0000 
306 64 0.4899 0.5101 184 95 0.2294 0.7706 
404 99 0.9594 0.0406 186 10 0.6785 0.3215 
415 100 0.9996 0.0004 208 61 0.4998 0.5002 
1226 98 0.9859 0.0141 253 87 0.9170 0.0830 
1246 73 0.9397 0.0603 254 87 0.9170 0.0830 
1358 75 0.4188 0.5812 269 85 0.9831 0.0169 
1440 85 0.7831 0.2169 1446 88 0.8525 0.1475 
1444 78 0.9977 0.0023 1712 89 0.6980 0.3020 
1550 82 0.8892 0.1108 1740 93 0.8064 0.1936 
1619 86 0.9122 0.0878 2300 74 0.5090 0.4910 
1630 78 0.6630 0.3370 2356 99 0.9814 0.0186 
1631 90 0.8378 0.1622 2402 87 0.9568 0.0432 
1632 88 0.8827 0.1173 2520 94 0.2023 0.7977 
2301 79 0.8174 0.1826 2555 94 0.9410 0.0590 
2505 79 0.5651 0.4349 4065 72 0.7038 0.2962 
2525 77 0.6103 0.3897 4153 70 0.5750 0.4250 
2550 75 0.4082 0.5918 4201 65 0.6573 0.3427 
2612 84 0.8612 0.1388 4455 74 0.8228 0.1772 
2614 73 0.7206 0.2794 4531 69 0.4455 0.5545 
3205 42 0.3844 0.6156 4555 89 0.6682 0.3318 
3208 66 0.5377 0.4623 4710 78 0.6918 0.3082 
3219 63 0.4347 0.5653 4713 78 0.7086 0.2914 
3500 86 0.9302 0.0698 4750 95 0.5536 0.4464 
3501 28 0.2655 0.7345 4818 70 0.6917 0.3083 
4211 76 0.6354 0.3646 4819 37 0.2646 0.7354 
4224 52 0.5861 0.4139 4853 87 0.6146 0.3854 
4300 64 0.5146 0.4854 5010 68 0.7313 0.2687 
4400 84 0.9698 0.0302 5111 59 0.3569 0.6431 
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HVAC Failed HVAC Non-Failed 
Fac Nmbr SCI R(t) Pf(t) Fac Nmbr SCI R(t) Pf(t) 
4413 72 0.7704 0.2296 5126 77 0.4190 0.5810 
4414 76 0.5364 0.4636 5251 77 0.4570 0.5430 
4701 100 0.9073 0.0927 5258 89 0.4247 0.5753 
4800 81 0.8770 0.1230 5301 59 0.2001 0.7999 
4809 82 0.8617 0.1383 5303 93 0.7696 0.2304 
4815 79 0.4663 0.5337 5314 58 0.1960 0.8040 
4820 70 0.3204 0.6796 5315 60 0.5007 0.4993 
4824 80 0.8128 0.1872 5405 70 0.9594 0.0406 
4826 86 0.4024 0.5976 5423 64 0.5850 0.4150 
4832 94 0.9972 0.0028 5434 59 0.6678 0.3322 
4838 93 0.9899 0.0101 7230 78 0.3295 0.6705 
4859 86 0.9415 0.0585 7236 10 0.0705 0.9295 
4885 96 0.9994 0.0006 7323 82 0.9030 0.0970 
4889 99 1.0000 0.0000 7328 69 0.6227 0.3773 
5129 68 0.6844 0.3156 7391 87 0.9302 0.0698 
5247 87 0.8797 0.1203 7405 89 0.4510 0.5490 
5256 73 0.7048 0.2952 7406 89 0.6621 0.3379 
5420 82 0.8893 0.1107 7410 70 0.8525 0.1475 
5500 84 0.9822 0.0178 7421 70 0.9153 0.0847 
5600 92 0.9646 0.0354 7427 95 0.6785 0.3215 
5607 82 0.9070 0.0930 7431 85 0.4081 0.5919 
6000 77 0.7529 0.2471 7454 90 0.6585 0.3415 
6006 90 0.9757 0.0243 7455 69 0.7269 0.2731 
7439 80 0.6001 0.3999 7513 67 0.6452 0.3548 
7514 76 0.5845 0.4155 7830 90 0.9594 0.0406 
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Electric Failed Electric Non-Failed 
Fac Nmbr SCI R(t) Pf(t) Fac Nmbr SCI R(t) Pf(t) 
12 91 0.4974 0.5026 290 60 0.6240 0.3760 
184 95 0.7481 0.2519 1447 73 0.4586 0.5414 
188 95 0.6864 0.3136 2352 90 0.9046 0.0954 
220 90 0.8916 0.1084 2353 90 0.9046 0.0954 
1632 78 0.5607 0.4393 5607 75 0.5103 0.4897 
2521 94 0.4351 0.5649 7104 96 0.6923 0.3077 
4413 76 0.6930 0.3070 7109 95 0.3946 0.6054 
4701 92 0.4890 0.5110 7333 93 0.8746 0.1254 
4707 91 0.6885 0.3115 7432 86 0.5422 0.4578 
4800 91 0.3796 0.6204 7433 95 0.8525 0.1475 
5230 86 0.9192 0.0808 7440 90 0.5677 0.4323 
5430 83 0.2588 0.7412 7506 92 0.4490 0.5510 

Fire Protection Failed Fire Protection Non-Failed 
Fac Nmbr SCI R(t) Pf(t) Fac Nmbr SCI R(t) Pf(t) 
129 64 0.3686 0.6314 5111 48 0.2600 0.7400 
183 78 0.8376 0.1624 5010 11 0.6563 0.3437 

Plumbing Failed Plumbing Non-Failed 
Fac Nmbr SCI R(t) Pf(t) Fac Nmbr SCI R(t) Pf(t) 
130 65 0.6076 0.3924 7232 95 0.8466 0.1534 
2350 84 0.8897 0.1103 4820 75 0.8678 0.1322 
96 87 0.7686 0.2314 5420 72 0.5310 0.4690 
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Keesler AFB 

HVAC Failed HVAC Non-Failed 
Fac Nmbr SCI R(t) Pf(t) Fac Nmbr SCI R(t) Pf(t) 
404 98 0.9893 0.0107 222 91 0.7335 0.2665 
470 92 0.6529 0.3471 233 83 0.6329 0.3671 
1203 85 0.5644 0.4356 237 93 0.9981 0.0019 
1906 92 0.8255 0.1745 414 84 0.3942 0.6058 
2004 36 0.4679 0.5321 417 97 0.9352 0.0648 
2306 100 0.9968 0.0032 2818 87 0.6482 0.3518 
2505 72 0.6800 0.3200 2901 90 0.4636 0.5364 
2801 62 0.8135 0.1865 3101 87 0.8575 0.1425 
2804 93 0.7230 0.2770 3518 98 0.9864 0.0136 
2816 92 0.3847 0.6153 3823 91 0.6349 0.3651 
2902 89 0.3931 0.6069 3945 92 0.7622 0.2378 
3501 83 0.6300 0.3700 4002 84 0.6020 0.3980 
3903 80 0.2747 0.7253 4204 89 0.7792 0.2208 
4106 91 0.7848 0.2152 4213 92 0.8918 0.1082 
4263 84 0.9090 0.0910 4281 94 0.9397 0.0603 
4266 84 0.8698 0.1302 4309 90 0.5626 0.4374 
4301 84 0.5011 0.4989 4330 72 0.6480 0.3520 
4605 84 0.4509 0.5491 4408 97 0.9877 0.0123 
4707 82 0.9588 0.0412 4609 99 0.9859 0.0141 
5745 92 0.8421 0.1579 5025 98 0.9739 0.0261 
5904 92 0.6820 0.3180 6902 76 0.5504 0.4496 
6950 45 0.6781 0.3219 6903 57 0.3701 0.6299 
7320 51 0.7065 0.2935 7408 89 0.3519 0.6481 
7701 92 0.5041 0.4959 7409 86 0.5122 0.4878 
7704 79 0.3352 0.6648 7712 91 0.6911 0.3089 

Electric Failed Electric Non-Failed 
Fac Nmbr SCI R(t) Pf(t) Fac Nmbr SCI R(t) Pf(t) 
1101 90 0.9950 0.0050 308 93 0.7980 0.2020 
3501 79 0.5626 0.4374 1203 84 0.5465 0.4535 
4106 93 0.7653 0.2347 2004 83 0.7734 0.2266 
4221 99 0.9833 0.0167 4213 93 0.8749 0.1251 
4301 74 0.1981 0.8019 4225 99 0.9840 0.0160 
4329 93 0.5126 0.4874 4266 93 0.8402 0.1598 
6734 84 0.9684 0.0316 4331 83 0.9156 0.0844 
6965 90 0.8531 0.1469 5904 83 0.8653 0.1347 
7315 90 0.8140 0.1860 2902 80 0.7611 0.2389 
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Fire Protection Failed Fire Protection Non-Failed 
Fac Nmbr SCI R(t) Pf(t) Fac Nmbr SCI R(t) Pf(t) 
1101 52 0.8466 0.1534 1704 24 0.4291 0.5709 
1201 87 1.0000 0.0000 4004 87 0.5533 0.4467 
1510 94 0.9674 0.0326 4213 87 0.8830 0.1170 
3101 5 0.6725 0.3275 4247 92 0.8652 0.1348 
4410 76 0.4598 0.5402 4278 93 0.8909 0.1091 
4432 4 0.7003 0.2997 4408 97 0.9957 0.0043 
7404 80 0.4611 0.5389 6732 96 0.9113 0.0887 

Plumbing Failed Plumbing Non-Failed 
Fac Nmbr SCI R(t) Pf(t) Fac Nmbr SCI R(t) Pf(t) 
*Facility data not available for failed systems 
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Patrick AFB 

HVAC Failed HVAC Non-Failed 
Fac Nmbr SCI R(t) Pf(t) Fac Nmbr SCI R(t) Pf(t) 
6 90 0.3868 0.6132 204 81 0.9807 0.0193 
206 81 0.9722 0.0278 205 81 0.9773 0.0227 
253 92 0.9354 0.0646 236 92 0.9404 0.0596 
265 76 0.6790 0.3210 255 87 0.7129 0.2871 
308 85 0.8123 0.1877 264 90 0.4785 0.5215 
312 83 0.9078 0.0922 335 89 0.6033 0.3967 
313 87 0.7830 0.2170 345 92 0.6663 0.3337 
319 18 0.2000 0.8000 401 86 0.4498 0.5502 
350 82 0.5550 0.4450 432 88 0.5878 0.4122 
352 85 0.7936 0.2064 505 90 0.9770 0.0230 
402 92 0.8314 0.1686 511 78 0.8515 0.1485 
404 81 0.3442 0.6558 513 91 0.4709 0.5291 
415 84 0.8607 0.1393 521 92 0.8657 0.1343 
423 82 0.7331 0.2669 523 86 0.7551 0.2449 
424 83 0.6928 0.3072 530 83 0.6754 0.3246 
425 82 0.4021 0.5979 534 91 0.7254 0.2746 
431 90 0.6381 0.3619 535 93 0.5023 0.4977 
502 68 0.3964 0.6036 537 83 0.5759 0.4241 
533 92 0.3901 0.6099 561 68 0.0254 0.9746 
543 91 0.9996 0.0004 606 53 0.1817 0.8183 
545 83 0.5488 0.4512 657 92 0.9594 0.0406 
546 83 0.5152 0.4848 673 84 0.4819 0.5181 
550 78 0.7468 0.2532 676 87 0.7628 0.2372 
556 83 0.9275 0.0725 689 89 0.9901 0.0099 
559 91 0.7598 0.2402 692 92 0.9397 0.0603 
560 83 0.5408 0.4592 700 93 0.7725 0.2275 
577 92 0.9837 0.0163 708 80 0.0550 0.9450 
629 91 0.9421 0.0579 818 81 0.7725 0.2275 
654 84 1.0000 0.0000 912 88 0.5230 0.4770 
671 87 0.8093 0.1907 917 93 0.8525 0.1475 
681 91 0.9048 0.0952 953 91 0.9859 0.0141 
698 45 0.5948 0.4052 957 91 0.9893 0.0107 
702 87 0.7036 0.2964 960 92 0.8862 0.1138 
710 82 0.8755 0.1245 1343 90 0.8371 0.1629 
720 83 0.7725 0.2275 1365 90 0.7181 0.2819 
721 93 0.8145 0.1855 1366 91 0.9272 0.0728 
722 90 0.6451 0.3549 1371 80 0.6415 0.3585 
732 89 0.9002 0.0998 1374 44 0.6415 0.3585 



 

119 

HVAC Failed HVAC Non-Failed 
Fac Nmbr SCI R(t) Pf(t) Fac Nmbr SCI R(t) Pf(t) 
750 53 0.8113 0.1887 1376 88 0.9977 0.0023 
751 92 0.8882 0.1118 1388 91 0.9595 0.0405 
810 81 0.7532 0.2468 1390 82 0.3683 0.6317 
820 82 0.7317 0.2683 1392 93 0.7269 0.2731 
821 85 0.7161 0.2839 1399 92 0.6785 0.3215 
822 87 0.4594 0.5406 1433 80 0.0321 0.9679 
910 85 0.9138 0.0862 1435 84 0.1370 0.8630 
935 91 0.9773 0.0227 1440 93 0.1370 0.8630 
938 93 0.8195 0.1805 1475 82 0.8297 0.1703 
945 84 0.4078 0.5922 1493 92 0.8023 0.1977 
961 83 0.5539 0.4461 1498 90 0.2784 0.7216 
967 91 0.8993 0.1007 1373 92 0.9594 0.0406 
969 91 0.6925 0.3075 1432 84 0.1370 0.8630 
978 92 0.8862 0.1138 610 32 0.1370 0.8630 
981 84 0.6836 0.3164 699 92 0.9397 0.0603 
984 79 0.6306 0.3694 306 88 0.8147 0.1853 
985 92 0.7632 0.2368 925 91 0.4984 0.5016 
986 88 0.9612 0.0388 1437 93 0.1370 0.8630 
988 79 0.5039 0.4961 997 91 0.9734 0.0266 
989 81 0.5447 0.4553 679 30 0.4337 0.5663 
991 87 0.6953 0.3047 884 1 0.5760 0.4240 
992 91 0.9934 0.0066 1372 87 0.7855 0.2145 
993 82 0.7695 0.2305 605 68 0.2784 0.7216 
994 91 0.8699 0.1301 503 70 0.3964 0.6036 
996 99 0.9872 0.0128 691 33 0.2242 0.7758 
998 83 0.8432 0.1568 1502 92 0.8862 0.1138 
1000 97 0.9696 0.0304 1060 92 0.6028 0.3972 
1317 89 0.7402 0.2598 9001 92 0.9747 0.0253 
1319 92 0.9364 0.0636 891 78 0.5309 0.4691 
1337 92 0.9594 0.0406 653 93 0.9193 0.0807 
1350 86 0.6486 0.3514 1401 66 0.0550 0.9450 
1358 91 0.9934 0.0066 266 83 0.8862 0.1138 
1364 81 0.5437 0.4563 3650 82 0.9397 0.0603 
1368 93 0.9198 0.0802 990 33 0.5425 0.4575 
1369 88 0.7155 0.2845 1361 30 0.8377 0.1623 
1379 100 0.9996 0.0004 647 91 0.6438 0.3562 
1391 90 0.7140 0.2860 882 92 0.8862 0.1138 
1402 93 0.8755 0.1245 407 84 0.5760 0.4240 
1500 92 0.8830 0.1170 453 79 0.9996 0.0004 
3656 73 0.9059 0.0941 337 87 0.6667 0.3333 
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HVAC Failed HVAC Non-Failed 
Fac Nmbr SCI R(t) Pf(t) Fac Nmbr SCI R(t) Pf(t) 
3659 84 0.7308 0.2692 1470 87 0.0387 0.9613 
5101 75 0.8177 0.1823 408 92 0.8527 0.1473 
5105 81 0.8110 0.1890 819 91 0.7725 0.2275 

Electric Failed Electric Non-Failed 
Fac Nmbr SCI R(t) Pf(t) Fac Nmbr SCI R(t) Pf(t) 
550 93 0.9913 0.0087 264 94 0.9773 0.0227 
661 93 1.0000 0.0000 556 92 0.9260 0.0740 
692 92 0.9397 0.0603 561 85 0.7827 0.2173 
750 70 0.8941 0.1059 605 85 0.8116 0.1884 
821 93 0.8437 0.1563 606 91 0.9994 0.0006 
822 89 0.8416 0.1584 635 85 0.9352 0.0648 
989 92 0.6433 0.3567 676 85 0.9594 0.0406 
1475 86 0.7363 0.2637 708 94 0.8525 0.1475 
3656 91 0.9863 0.0137 721 85 0.7725 0.2275 
 
Fire Protection Failed Fire Protection Non-Failed 
Fac Nmbr SCI R(t) Pf(t) Fac Nmbr SCI R(t) Pf(t) 
306 99 0.8980 0.1020 29 75 0.8533 0.1467 
313 44 0.0790 0.9210 236 9 0.6540 0.3460 
350 96 0.9743 0.0257 251 96 0.6551 0.3449 
352 99 0.9951 0.0049 308 98 0.8980 0.1020 
502 10 0.6540 0.3460 311 67 0.9055 0.0945 
503 83 0.4618 0.5382 345 82 0.5411 0.4589 
545 3 0.1008 0.8992 415 78 0.8638 0.1362 
698 88 0.8749 0.1251 511 43 0.7538 0.2462 
750 89 0.4867 0.5133 522 44 0.7559 0.2441 
810 49 0.7552 0.2448 533 28 0.6540 0.3460 
821 99 0.9939 0.0061 546 11 0.1254 0.8746 
822 97 0.8963 0.1037 561 89 0.9651 0.0349 
967 59 0.7671 0.2329 624 91 0.7204 0.2796 
985 15 0.4731 0.5269 629 75 0.6930 0.3070 
986 12 0.3253 0.6747 630 76 0.9161 0.0839 
996 90 0.5856 0.4144 632 89 0.7821 0.2179 
1000 100 0.9906 0.0094 651 87 0.8376 0.1624 
1319 98 0.9791 0.0209 671 88 0.8537 0.1463 
1391 27 0.3470 0.6530 672 90 0.8376 0.1624 
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Fire Protection Failed Fire Protection Non-Failed 
Fac Nmbr SCI R(t) Pf(t) Fac Nmbr SCI R(t) Pf(t) 
1433 88 0.8698 0.1302 980 80 0.9069 0.0931 

Plumbing Failed Plumbing Non-Failed 
Fac Nmbr SCI R(t) Pf(t) Fac Nmbr SCI R(t) Pf(t) 
986 88 0.8109 0.1891 533 92 0.9608 0.0392 
439 85 0.4468 0.5532 530 85 0.4393 0.5607 
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Scott AFB 

HVAC Failed HVAC Non-Failed 
Fac Nmbr SCI R(t) Pf(t) Fac Nmbr SCI R(t) Pf(t) 
3 65 0.5981 0.4019 5 92 0.6973 0.3027 
8 92 0.9694 0.0306 6 73 0.6256 0.3744 
10 95 0.9412 0.0588 44 15 0.3955 0.6045 
40 52 0.7009 0.2991 54 83 0.7356 0.2644 
43 86 0.6923 0.3077 150 83 0.8981 0.1019 
50 67 0.6600 0.3400 352 92 0.8499 0.1501 
52 87 0.9127 0.0873 386 72 0.7286 0.2714 
56 90 0.8415 0.1585 464 92 0.8358 0.1642 
57 84 0.7377 0.2623 468 93 0.9397 0.0603 
60 93 0.7469 0.2531 513 87 0.3863 0.6137 
61 93 0.6648 0.3352 514 80 0.5324 0.4676 
382 91 0.9953 0.0047 516 93 0.6432 0.3568 
433 84 0.5972 0.4028 517 72 0.6012 0.3988 
450 91 0.4473 0.5527 528 92 0.8588 0.1412 
460 93 0.7058 0.2942 531 93 0.7836 0.2164 
470 96 0.9784 0.0216 549 88 0.6957 0.3043 
506 87 0.9995 0.0005 742 85 0.6402 0.3598 
548 87 0.8225 0.1775 750 84 0.5275 0.4725 
555 93 0.5007 0.4993 755 91 0.9801 0.0199 
700 82 0.4329 0.5671 859 92 0.7868 0.2132 
861 48 0.2650 0.7350 1089 99 0.9951 0.0049 
864 93 0.8724 0.1276 1191 93 0.6705 0.3295 
868 57 0.4866 0.5134 1420 75 0.9575 0.0425 
1192 83 0.7175 0.2825 1425 98 0.9859 0.0141 
1422 82 0.8215 0.1785 1426 82 0.9575 0.0425 
1423 98 0.9994 0.0006 1427 98 0.9859 0.0141 
1424 83 0.9575 0.0425 1428 82 0.9575 0.0425 
1441 92 0.5452 0.4548 1430 84 0.7407 0.2593 
1510 60 0.2899 0.7101 1443 78 0.7407 0.2593 
1513 38 0.3197 0.6803 1515 92 0.9738 0.0262 
1521 89 0.9995 0.0005 1529 83 0.5383 0.4617 
1533 93 0.4629 0.5371 1530 79 0.4108 0.5892 
1560 94 0.8645 0.1355 1534 91 0.8909 0.1091 
1600 42 0.6588 0.3412 1575 68 0.4586 0.5414 
1620 78 0.6881 0.3119 1601 35 0.0869 0.9131 
1650 93 0.9261 0.0739 1907 72 0.7040 0.2960 
1670 85 0.4995 0.5005 1980 77 0.5491 0.4509 
1700 88 0.6753 0.3247 1981 77 0.9193 0.0807 
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HVAC Failed HVAC Non-Failed 
Fac Nmbr SCI R(t) Pf(t) Fac Nmbr SCI R(t) Pf(t) 
1800 72 0.9693 0.0307 3272 38 0.2053 0.7947 
1805 71 0.7097 0.2903 3284 93 0.9200 0.0800 
1807 86 0.9831 0.0169 3285 65 0.6759 0.3241 
1820 95 0.8169 0.1831 3292 47 0.0200 0.9800 
1830 65 0.5688 0.4312 3300 99 0.8408 0.1592 
1850 91 0.9772 0.0228 3301 24 0.1204 0.8796 
1900 92 0.7408 0.2592 3307 0 0.0000 1.0000 
1906 64 0.8494 0.1506 3600 93 0.5080 0.4920 
1930 77 0.7233 0.2767 3651 89 0.6404 0.3596 
1934 50 0.3278 0.6722 3652 84 0.7120 0.2880 
1940 93 0.8130 0.1870 3677 92 0.5505 0.4495 
1948 78 0.8276 0.1724 3901 87 0.8400 0.1600 
1961 78 0.7903 0.2097 4010 67 0.7668 0.2332 
1981 78 0.9193 0.0807 4020 82 0.8327 0.1673 
1987 70 0.7845 0.2155 4022 78 0.8073 0.1927 
1989 55 0.6061 0.3939 4024 92 0.9107 0.0893 
3189 63 0.4559 0.5441 4030 93 0.8702 0.1298 
3192 93 0.6700 0.3300 4032 92 0.8834 0.1166 
3650 86 0.6596 0.3404 4036 93 0.9457 0.0543 
3689 2 0.4420 0.5580 5000 79 0.7977 0.2023 
3900 84 0.6994 0.3006 5008 78 0.7983 0.2017 
4001 87 0.8621 0.1379 5022 80 0.7742 0.2258 
4560 93 0.6348 0.3652 5046 91 0.6483 0.3517 
4780 93 0.7703 0.2297 5048 77 0.9805 0.0195 
5713 90 0.9237 0.0763 5498 35 0.6356 0.3644 
 
Electric Failed Electric Non-Failed 
Fac Nmbr SCI R(t) Pf(t) Fac Nmbr SCI R(t) Pf(t) 
40 92 0.9942 0.0058 382 92 0.9918 0.0082 
352 93 0.7820 0.2180 460 92 0.8837 0.1163 
57 92 0.6346 0.3654 861 81 0.4736 0.5264 
433 88 0.6069 0.3931 1510 88 0.7604 0.2396 
533 52 0.1993 0.8007 1620 93 0.7226 0.2774 
859 92 0.7601 0.2399 1807 87 0.9856 0.0144 
1515 93 0.9783 0.0217 1900 90 0.3332 0.6668 
1521 91 0.9189 0.0811 3284 93 0.8994 0.1006 
1530 86 0.8633 0.1367 3289 41 0.4172 0.5828 
4001 94 0.4716 0.5284 3650 94 0.5033 0.4967 
4024 93 0.9299 0.0701 3900 87 0.5800 0.4200 
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Fire Protection Failed Fire Protection Non-Failed 
Fac Nmbr SCI R(t) Pf(t) Fac Nmbr SCI R(t) Pf(t) 
506 85 0.9939 0.0061 750 10 0.7856 0.2144 
1948 93 0.7784 0.2216 861 93 0.8045 0.1955 

Plumbing Failed Plumbing Non-Failed 
Fac Nmbr SCI R(t) Pf(t) Fac Nmbr SCI R(t) Pf(t) 
3 92 0.3730 0.6270 1191 90 0.8425 0.1575 
1575 91 0.6043 0.3957 1807 93 0.9899 0.0101 
1700 88 0.7060 0.2940 1900 89 0.4852 0.5148 
3900 91 0.7360 0.2640 3189 80 0.7158 0.2842 
 

 

Note: SCI values were not calculated via the PoF model.  SCI values were pulled 

from BUILDER® for CY14. 
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Appendix B.  R code for Probabilistic Assessment of Failure (PoF) model 

The below code represents the Ordered Weighted Average method to construct 

the Probabilistic Assessment of Failure (PoF) model. This research created an R function 

for the four major systems considered. Once created, a user needs only to input the 

component-section average age. 

Plumbing System (D20) 

D20 = function(bldg, 
               d211,d212,d213,d214,d215,d216,d217,d219, 
               d221,d222,d223,d224,d225,d229, 
               d231,d232,d233,d234,d235,d239, 
               d241,d242,d243,d244,d249, 
               d291,d292,d293,d294,d295,d299) { 
#Year of Data Being Pulled 
  yr =  
#Put into component vectors 
  i.21 = c(d211,d212,d213,d214,d215,d216,d217,d219) 
  i.22 = c(d221,d222,d223,d224,d225,d229) 
  i.23 = c(d231,d232,d233,d234,d235,d239) 
  i.24 = c(d241,d242,d243,d244,d249) 
  i.29 = c(d291,d292,d293,d294,d295,d299) 
#Return Logic Weight vectors 
  lg.21 = (as.logical(i.21)) 
  lg.22 = (as.logical(i.22)) 
  lg.23 = (as.logical(i.23)) 
  lg.24 = (as.logical(i.24)) 
  lg.29 = (as.logical(i.29)) 
#Assign C‐S Weights 
  w1.21 = c(.6375,.4067,.6500,.5375,1.0,1.0,.4933,1.0) 
  w1.22 = c(.3030,1.0,1.0,1.0,1.0,1.0) 
  w1.23 = c(.4114,1.0,1.0,1.0,1.0,.4750) 
  w1.24 = c(1.0,.5475,.9014,1.0,1.0) 
  w1.29 = c(.4360,1.0,1.0,1.0,1.0,.5083) 
#Standardize the C‐S Weight cs 
  w.21 = w1.21*lg.21 
  w.22 = w1.22*lg.22 
  w.23 = w1.23*lg.23 
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  w.24 = w1.24*lg.24 
  w.29 = w1.29*lg.29 
 
  w.21 = w.21[w.21 != 0 ] 
  w.22 = w.22[w.22 != 0 ] 
  w.23 = w.23[w.23 != 0 ] 
  w.24 = w.24[w.24 != 0 ] 
  w.29 = w.29[w.29 != 0 ] 
 
  w.21 = w.21/sum(w.21) 
  w.22 = w.22/sum(w.22) 
  w.23 = w.23/sum(w.23) 
  w.24 = w.24/sum(w.24) 
  w.29 = w.29/sum(w.29) 
#Assign Service Lives 
  l.21 = c(25,25,25,25,25,10,25,15) 
  l.22 = c(50,25,25,25,25,8) 
  l.23 = c(50,25,25,25,25,100) 
  l.24 = c(25,25,25,25,25) 
  l.29 = c(15,25,25,25,25,25) 
#Calculate t as a percentage of service life 
  t.21 = ((yr‐i.21)/l.21)*lg.21 
  t.22 = ((yr‐i.22)/l.22)*lg.22 
  t.23 = ((yr‐i.23)/l.23)*lg.23 
  t.24 = ((yr‐i.24)/l.24)*lg.24 
  t.29 = ((yr‐i.29)/l.29)*lg.29 
#Calculate PoF vector 
  pof.21 = c(); pof.22=c();pof.23=c();pof.24=c();pof.25=c();pof.26=c();pof.27=c();pof.29=c(
); 
  b = 1 
  a = 2.64  
  CI_t = .37 
  for(i in 1:length(t.21)){ 
    pof = 1‐(1/CI_t)^(‐(t.21[i]/b)^a) 
    pof.21[i] = pof 
  } 
  for(i in 1:length(t.22)){ 
    pof = 1‐(1/CI_t)^(‐(t.22[i]/b)^a) 
    pof.22[i] = pof 
  } 
  for(i in 1:length(t.23)){ 
    pof = 1‐(1/CI_t)^(‐(t.23[i]/b)^a) 
    pof.23[i] = pof 
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  } 
  for(i in 1:length(t.24)){ 
    pof = 1‐(1/CI_t)^(‐(t.24[i]/b)^a) 
    pof.24[i] = pof 
  } 
  for(i in 1:length(t.29)){ 
    pof = 1‐(1/CI_t)^(‐(t.29[i]/b)^a) 
    pof.29[i] = pof 
  } 
#Sort PoF Vector 
  pof.21 = sort(pof.21, decreasing = T) 
  pof.22 = sort(pof.22, decreasing = T) 
  pof.23 = sort(pof.23, decreasing = T) 
  pof.24 = sort(pof.24, decreasing = T) 
  pof.29 = sort(pof.29, decreasing = T) 
#Assign CII Weights 
  if (sum(pof.21) == 0){c.21 = 0}else {c.21 = .4472} 
  if (sum(pof.22) == 0){c.22 = 0}else {c.22 = .5419} 
  if (sum(pof.23) == 0){c.23 = 0}else {c.23 = .6279} 
  if (sum(pof.24) == 0){c.24 = 0}else {c.24 = .5216} 
  if (sum(pof.29) == 0){c.29 = 0}else {c.29 = .3025} 
#Standardize CII Weights 
  sys.wt.2 = c(c.21,c.22,c.23,c.24,c.29) 
  sys.wt.2 = sys.wt.2[sys.wt.2 != 0 ] 
  sys.wt.2 = (sys.wt.2/(sum(sys.wt.2))) 
#Remove zeroes from PoF vectors 
  pof.21 = pof.21[pof.21 != 0 ] 
  pof.22 = pof.22[pof.22 != 0 ] 
  pof.23 = pof.23[pof.23 != 0 ] 
  pof.24 = pof.24[pof.24 != 0 ] 
  pof.29 = pof.29[pof.29 != 0 ] 
#Compute Compontent Level ORAND Operators 
  pofc.21 = crossprod(pof.21,w.21) 
  pofc.22 = crossprod(pof.22,w.22) 
  pofc.23 = crossprod(pof.23,w.23) 
  pofc.24 = crossprod(pof.24,w.24) 
  pofc.29 = crossprod(pof.29,w.29) 
  comp.op.2 = c(pofc.21,pofc.22,pofc.23,pofc.24,pofc.29) 
#Sort the Component level vector 
  comp.op.2 = comp.op.2[comp.op.2 != 0 ] 
  comp.op.2 = sort(comp.op.2, decreasing = T) 
#Calculate System PoF 
sys.pof.fail.2 = crossprod(sys.wt.2,comp.op.2) 
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sys.pof.fail.2 
} 

HVAC System (D30) 

D30 = function(bldg, 
               d311,d312,d313,d314,d315,d316,d317,d319, 
               d321,d322,d323,d324,d325,d329, 
               d331,d332,d339, 
               d341,d342,d343,d344,d345,d346,d347,d348,d349, 
               d351,d352,d353,d354,d355,d356,d359, 
               d361,d362,d363,d364,d365,d369, 
               d371,d372,d373,d379, 
               d391,d392,d399) { 
  yr =  
  #Put ages into component vectors 
  i.31 = c(d311,d312,d313,d314,d315,d316,d317,d319) 
  i.32 = c(d321,d322,d323,d324,d325,d329) 
  i.33 = c(d331,d332,d339) 
  i.34 = c(d341,d342,d343,d344,d345,d346,d347,d348,d349) 
  i.35 = c(d351,d352,d353,d354,d355,d356,d359) 
  i.36 = c(d361,d362,d363,d364,d365,d369) 
  i.37 = c(d371,d372,d373,d379) 
  i.39 = c(d391,d392,d399) 
  #Return Logic vectors 
  lg.31 = (as.logical(i.31)) 
  lg.32 = (as.logical(i.32)) 
  lg.33 = (as.logical(i.33)) 
  lg.34 = (as.logical(i.34)) 
  lg.35 = (as.logical(i.35)) 
  lg.36 = (as.logical(i.36)) 
  lg.37 = (as.logical(i.37)) 
  lg.39 = (as.logical(i.39)) 
  #Assign C‐S Weights 
  w1.31 = c(1.0,0.2,1.0,1.0,1.0,1.0,1.0,1.0) 
  w1.32 = c(1.0,0.5265,.4247,.648,1.0,1.0) 
  w1.33 = c(1.0,1.0,0.09) 
  w1.34 = c(.31,.436,1.0,1.0,.2186,1.0,1.0,1.0,.1775) 
  w1.35 = c(1,1,1,.2640,.2725,1,.2718) 
  w1.36 = c(1,.5650,.5650,1,1,.4325) 
  w1.37 = c(1,1,1,1) 
  w1.39 = c(1,1,.2344) 
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#Standardize the C‐S Weight cs  
  w.31 = w1.31*lg.31 
  w.32 = w1.32*lg.32 
  w.33 = w1.33*lg.33  
  w.34 = w1.34*lg.34 
  w.35 = w1.35*lg.35 
  w.36 = w1.36*lg.36 
  w.37 = w1.37*lg.37 
  w.39 = w1.39*lg.39 
   
  w.31 = w.31[w.31 != 0 ] 
  w.32 = w.32[w.32 != 0 ] 
  w.33 = w.33[w.33 != 0 ] 
  w.34 = w.34[w.34 != 0 ] 
  w.35 = w.35[w.35 != 0 ] 
  w.36 = w.36[w.36 != 0 ] 
  w.37 = w.37[w.37 != 0 ] 
  w.39 = w.39[w.39 != 0 ] 
   
  w.31 = w.31/sum(w.31) 
  w.32 = w.32/sum(w.32) 
  w.33 = w.33/sum(w.33) 
  w.34 = w.34/sum(w.34) 
  w.35 = w.35/sum(w.35) 
  w.36 = w.36/sum(w.36) 
  w.37 = w.37/sum(w.37) 
  w.39 = w.39/sum(w.39) 
  #Assign Service Lives vectors 
  l.31 = c(20,50,20,20,25,20,20,20) 
  l.32 = c(30,15,25,20,20,20) 
  l.33 = c(20,20,15) 
  l.34 = c(20,30,20,20,30,20,10,15,30) 
  l.35 = c(20,25,15,30,25,20,25) 
  l.36 = c(20,10,10,25,20,10) 
  l.37 = c(20,20,20,20) 
  l.39 = c(20,20,20) 
  #Calculate t as a percentage of service life 
  t.31 = ((yr‐i.31)/l.31)*lg.31 
  t.32 = ((yr‐i.32)/l.32)*lg.32 
  t.33 = ((yr‐i.33)/l.33)*lg.33 
  t.34 = ((yr‐i.34)/l.34)*lg.34 
  t.35 = ((yr‐i.35)/l.35)*lg.35 
  t.36 = ((yr‐i.36)/l.36)*lg.36 
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  t.37 = ((yr‐i.37)/l.37)*lg.37 
  t.39 = ((yr‐i.39)/l.39)*lg.39 
#Calculate PoF vector 
pof.31 = c(); pof.32=c();pof.33=c();pof.34=c();pof.35=c();pof.36=c();pof.37=c();pof.39=c(); 
b = 1  
a = 2.64  
CI_t = .37 
for(i in 1:length(t.31)){ 
  pof = 1‐(1/CI_t)^(‐(t.31[i]/b)^a) 
  pof.31[i] = pof 
} 
for(i in 1:length(t.32)){ 
  pof = 1‐(1/CI_t)^(‐(t.32[i]/b)^a) 
  pof.32[i] = pof 
} 
for(i in 1:length(t.33)){ 
  pof = 1‐(1/CI_t)^(‐(t.33[i]/b)^a) 
  pof.33[i] = pof 
} 
for(i in 1:length(t.34)){ 
  pof = 1‐(1/CI_t)^(‐(t.34[i]/b)^a) 
  pof.34[i] = pof 
} 
for(i in 1:length(t.35)){ 
  pof = 1‐(1/CI_t)^(‐(t.35[i]/b)^a) 
  pof.35[i] = pof 
} 
for(i in 1:length(t.36)){ 
  pof = 1‐(1/CI_t)^(‐(t.36[i]/b)^a) 
  pof.36[i] = pof 
} 
for(i in 1:length(t.37)){ 
  pof = 1‐(1/CI_t)^(‐(t.37[i]/b)^a) 
  pof.37[i] = pof 
} 
for(i in 1:length(t.39)){ 
  pof = 1‐(1/CI_t)^(‐(t.39[i]/b)^a) 
  pof.39[i] = pof 
} 
#Sort PoF Vector 
pof.31 = sort(pof.31, decreasing = T) 
pof.32 = sort(pof.32, decreasing = T) 
pof.33 = sort(pof.33, decreasing = T) 
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pof.34 = sort(pof.34, decreasing = T) 
pof.35 = sort(pof.35, decreasing = T) 
pof.36 = sort(pof.36, decreasing = T) 
pof.37 = sort(pof.37, decreasing = T) 
pof.39 = sort(pof.39, decreasing = T) 
#Assign CII Weights  
if (sum(pof.31) == 0){c.31 = 0} else {c.31 = .3163} 
if (sum(pof.32) == 0){c.32 = 0} else {c.32 = .6363} 
if (sum(pof.33) == 0){c.33 = 0} else {c.33 = .5755} 
if (sum(pof.34) == 0){c.34 = 0} else {c.34 = .4835} 
if (sum(pof.35) == 0){c.35 = 0} else {c.35 = .5836} 
if (sum(pof.36) == 0){c.36 = 0} else {c.36 = .5014} 
if (sum(pof.37) == 0){c.37 = 0} else {c.37 = .5168} 
if (sum(pof.39) == 0){c.39 = 0} else {c.39 = .3239} 
sys.wt = c(c.31,c.32,c.33,c.34,c.35,c.36,c.37,c.39) 
sys.wt = sys.wt[sys.wt != 0 ] 
sys.wt = (sys.wt/(sum(sys.wt))) 
#Remove zeroes from PoF vectors 
pof.31 = pof.31[pof.31 != 0 ] 
pof.32 = pof.32[pof.32 != 0 ] 
pof.33 = pof.33[pof.33 != 0 ] 
pof.34 = pof.34[pof.34 != 0 ] 
pof.35 = pof.35[pof.35 != 0 ] 
pof.36 = pof.36[pof.36 != 0 ] 
pof.37 = pof.37[pof.37 != 0 ] 
pof.39 = pof.39[pof.39 != 0 ] 
# Compute Compontent Level ORAND Operators 
pofc.31 = crossprod(pof.31,w.31) 
pofc.32 = crossprod(pof.32,w.32) 
pofc.33 = crossprod(pof.33,w.33) 
pofc.34 = crossprod(pof.34,w.34) 
pofc.35 = crossprod(pof.35,w.35) 
pofc.36 = crossprod(pof.36,w.36) 
pofc.37 = crossprod(pof.37,w.37) 
pofc.39 = crossprod(pof.39,w.39) 
comp.op = c(pofc.31,pofc.32,pofc.33,pofc.34,pofc.35,pofc.36,pofc.37,pofc.39) 
#Sort the Component level vector 
comp.op = comp.op[comp.op != 0 ] 
comp.op = sort(comp.op, decreasing = T) 
#Calculate System PoF 
sys.pof.fail = crossprod(sys.wt,comp.op) 
sys.pof.fail 
} 
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Fire Protection System (D40) 

D40 = function(bldg, 
               d411,d412, 
               d421,d422, 
               d431, 
               d441,d442, 
               d451, 
               d491,d492,d494,d494,d499) { 
#Year of Data Being Pulled 
  yr =  
#Put into component vectors 
  i.41 = c(d411,d412) 
  i.42 = c(d411,d412) 
  i.43 = c(d431) 
  i.44 = c(d441,d442) 
  i.45 = c(d451) 
  i.49 = c(d491,d492,d493,d494,d499) 
#Return Logic Weight vectors 
  lg.41 = (as.logical(i.41)) 
  lg.42 = (as.logical(i.42)) 
  lg.43 = (as.logical(i.43)) 
  lg.44 = (as.logical(i.44)) 
  lg.45 = (as.logical(i.45)) 
  lg.49 = (as.logical(i.49)) 
#Assign C‐S Weights 
  w1.41 = c(1.0,0.3613) 
  w1.42 = c(1.0,1.0) 
  w1.43 = c(.2114) 
  w1.44 = c(.3150,.3150) 
  w1.45 = c(1.0) 
  w1.49 = c(.4700,1.0,1.0,.4700,1.0) 
#Standardize the C‐S Weight cs 
  w.41 = w1.41*lg.41 
  w.42 = w1.42*lg.42 
  w.43 = w1.43*lg.43  
  w.44 = w1.44*lg.44 
  w.45 = w1.45*lg.45 
  w.49 = w1.49*lg.49 
   
  w.41 = w.41[w.41 != 0 ] 
  w.42 = w.42[w.42 != 0 ] 
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  w.43 = w.43[w.43 != 0 ] 
  w.44 = w.44[w.44 != 0 ] 
  w.45 = w.45[w.45 != 0 ] 
  w.49 = w.49[w.49 != 0 ] 
   
  w.41 = w.41/sum(w.41) 
  w.42 = w.42/sum(w.42) 
  w.43 = w.43/sum(w.43) 
  w.44 = w.44/sum(w.44) 
  w.45 = w.45/sum(w.45) 
  w.49 = w.49/sum(w.49) 
#Assign Service Lives #Working# 
  l.41 = c(20,20) 
  l.42 = c(20,20) 
  l.43 = c(20) 
  l.44 = c(50,23) 
  l.45 = c(20) 
  l.49 = c(25,20,20,25,20) 
#Calculate t as a percentage of service life 
  t.41 = ((yr‐i.41)/l.41)*lg.41 
  t.42 = ((yr‐i.42)/l.42)*lg.42 
  t.43 = ((yr‐i.43)/l.43)*lg.43 
  t.44 = ((yr‐i.44)/l.44)*lg.44 
  t.45 = ((yr‐i.45)/l.45)*lg.45 
  t.49 = ((yr‐i.49)/l.49)*lg.49 
#Calculate PoF vector 
  pof.41 = c(); pof.42=c();pof.43=c();pof.44=c();pof.45=c();pof.49=c(); 
  b = 1  
  a = 2.64  
  CI_t = .37 
  for(i in 1:length(t.41)){ 
    pof = 1‐(1/CI_t)^(‐(t.41[i]/b)^a) 
    pof.41[i] = pof 
  } 
  for(i in 1:length(t.42)){ 
    pof = 1‐(1/CI_t)^(‐(t.42[i]/b)^a) 
    pof.42[i] = pof 
  } 
  for(i in 1:length(t.43)){ 
    pof = 1‐(1/CI_t)^(‐(t.43[i]/b)^a) 
    pof.43[i] = pof 
  } 
  for(i in 1:length(t.44)){ 
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    pof = 1‐(1/CI_t)^(‐(t.44[i]/b)^a) 
    pof.44[i] = pof 
  } 
  for(i in 1:length(t.45)){ 
    pof = 1‐(1/CI_t)^(‐(t.45[i]/b)^a) 
    pof.45[i] = pof 
  } 
  for(i in 1:length(t.49)){ 
    pof = 1‐(1/CI_t)^(‐(t.49[i]/b)^a) 
    pof.49[i] = pof 
  } 
  #Sort PoF Vector 
  pof.41 = sort(pof.41, decreasing = T) 
  pof.42 = sort(pof.42, decreasing = T) 
  pof.43 = sort(pof.43, decreasing = T) 
  pof.44 = sort(pof.44, decreasing = T) 
  pof.45 = sort(pof.45, decreasing = T) 
  pof.49 = sort(pof.49, decreasing = T) 
#Assign CII Weights  
  if (sum(pof.41) == 0){c.41 = 0}else {c.41 = .3070 } 
  if (sum(pof.42) == 0){c.42 = 0}else {c.42 = .3460} 
  if (sum(pof.43) == 0){c.43 = 0}else {c.43 = .3425} 
  if (sum(pof.44) == 0){c.44 = 0}else {c.44 = .2680} 
  if (sum(pof.45) == 0){c.45 = 0}else {c.45 = .3190} 
  if (sum(pof.49) == 0){c.49 = 0}else {c.49 = .2680}  
#Standardize CII Weights 
  sys.wt.4 = c(c.41,c.42,c.43,c.44,c.45,c.49) 
  sys.wt.4 = sys.wt.4[sys.wt.4 != 0 ] 
  sys.wt = (sys.wt.4/(sum(sys.wt.4))) 
#Remove zeroes from PoF vectors 
  pof.41 = pof.41[pof.41 != 0 ] 
  pof.42 = pof.42[pof.42 != 0 ] 
  pof.43 = pof.43[pof.43 != 0 ] 
  pof.44 = pof.44[pof.44 != 0 ] 
  pof.45 = pof.45[pof.45 != 0 ] 
  pof.49 = pof.49[pof.49 != 0 ] 
# Compute Compontent Level ORAND Operators 
  pofc.41 = crossprod(pof.41,w.41) 
  pofc.42 = crossprod(pof.42,w.42) 
  pofc.43 = crossprod(pof.43,w.43) 
  pofc.44 = crossprod(pof.44,w.44) 
  pofc.45 = crossprod(pof.45,w.45) 
  pofc.49 = crossprod(pof.49,w.49) 
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  comp.op.4 = c(pofc.41,pofc.42,pofc.43,pofc.44,pofc.45,pofc.49) 
#Sort the Component level vector 
  comp.op.4 = comp.op.4[comp.op.4 != 0 ] 
  comp.op.4 = sort(comp.op.4, decreasing = T) 
#Calculate System PoF 
sys.pof.fail.4 = crossprod(sys.wt.4,comp.op.4) 
sys.pof.fail.4 
} 

Electrical System (D50) 

D50 = function(bldg, 
               d511,d512,d513,d514,d515,d516,d519, 
               d521,d522,d529, 
               d531,d532,d533,d534,d535,d536,d537,d539, 
               d591,d592,d593,d594,d595,d596,d599){ 
#Year of Data Being Pulled 
  yr =  
#Put into component vectors 
  i.51 = c(d511,d512,d513,d514,d515,d516,d519) 
  i.52 = c(d521,d522,d529) 
  i.53 = c(d531,d532,d533,d534,d535,d536,d537,d539) 
  i.59 = c(d591,d592,d593,d594,d595,d596,d599) 
#Return Logic Weight vectors 
  lg.51 = (as.logical(i.51)) 
  lg.52 = (as.logical(i.52)) 
  lg.53 = (as.logical(i.53)) 
  lg.59 = (as.logical(i.59)) 
#Assign C‐S Weights 
  w1.51 = c(1.0,1.0,.4850,1.0,1.0,.3840,1.0) 
  w1.52 = c(.2357,.3014,.4300) 
  w1.53 = c(1.0,1.0,.3500,1.0,1.0,1.0,1.0,.3700) 
  w1.59 = c(1.0,1.0,.5250,.6100,1.0,1.0,.4225) 
 
#Standardize the C‐S Weight cs 
  w.51 = w1.51*lg.51 
  w.52 = w1.52*lg.52 
  w.53 = w1.53*lg.53  
  w.59 = w1.59*lg.59 
   
  w.51 = w.51[w.51 != 0] 
  w.52 = w.52[w.52 != 0] 
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  w.53 = w.53[w.53 != 0] 
  w.59 = w.59[w.59 != 0] 
   
  w.51 = w.51/sum(w.51) 
  w.52 = w.52/sum(w.52) 
  w.53 = w.53/sum(w.53) 
  w.59 = w.59/sum(w.59) 
#Assign Service Lives #Working# 
  l.51 = c(20,20,30,50,50,40,25) 
  l.52 = c(60,20,15) 
  l.53 = c(20,20,15,20,20,20,20,15) 
  l.59 = c(20,20,50,50,20,20,18) 
#Calculate t as a percentage of service life 
  t.51 = ((yr‐i.51)/l.51)*lg.51 
  t.52 = ((yr‐i.52)/l.52)*lg.52 
  t.53 = ((yr‐i.53)/l.53)*lg.53 
  t.59 = ((yr‐i.59)/l.59)*lg.59 
#Calculate PoF vector 
  pof.51 = c(); pof.52=c();pof.53=c();pof.59=c(); 
  b = 1  
  a = 2.64  
  CI_t = .37 
  for(i in 1:length(t.51)){ 
    pof = 1‐(1/CI_t)^(‐(t.51[i]/b)^a) 
    pof.51[i] = pof 
  } 
  for(i in 1:length(t.52)){ 
    pof = 1‐(1/CI_t)^(‐(t.52[i]/b)^a) 
    pof.52[i] = pof 
  } 
  for(i in 1:length(t.53)){ 
    pof = 1‐(1/CI_t)^(‐(t.53[i]/b)^a) 
    pof.53[i] = pof 
  } 
  for(i in 1:length(t.59)){ 
    pof = 1‐(1/CI_t)^(‐(t.59[i]/b)^a) 
    pof.59[i] = pof 
  } 
#Sort PoF Vector 
  pof.51 = sort(pof.51, decreasing = T) 
  pof.52 = sort(pof.52, decreasing = T) 
  pof.53 = sort(pof.53, decreasing = T) 
  pof.59 = sort(pof.59, decreasing = T) 
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#Assign CII Weights  
  if (sum(pof.51) == 0){c.51 = 0}else {c.51 = .6091} 
  if (sum(pof.52) == 0){c.52 = 0}else {c.52 = .6708} 
  if (sum(pof.53) == 0){c.53 = 0}else {c.53 = .3362} 
  if (sum(pof.59) == 0){c.59 = 0}else {c.59 = .3826} 
#Standardize CII Weights   
  sys.wt.5 = c(c.51,c.52,c.53,c.59) 
  sys.wt.5 = sys.wt.5[sys.wt.5 != 0 ] 
  sys.wt.5 = (sys.wt.5/(sum(sys.wt.5))) 
#Remove zeroes from PoF vectors 
  pof.51 = pof.51[pof.51 != 0 ] 
  pof.52 = pof.52[pof.52 != 0 ] 
  pof.53 = pof.53[pof.53 != 0 ] 
  pof.59 = pof.59[pof.59 != 0 ]   
#Compute Compontent Level ORAND Operators 
  pofc.51 = crossprod(pof.51,w.51) 
  pofc.52 = crossprod(pof.52,w.52) 
  pofc.53 = crossprod(pof.53,w.53) 
  pofc.59 = crossprod(pof.59,w.59) 
  comp.op.5 = c(pofc.51,pofc.52,pofc.53,pofc.59) 
#Sort the Component level vector 
  comp.op.5 = comp.op.5[comp.op.5 != 0 ] 
  comp.op.5 = sort(comp.op.5, decreasing = T)   
#Calculate System PoF 
sys.pof.fail.5 = crossprod(sys.wt.5,comp.op.5) 
sys.pof.fail.5 
} 

With the above functions created, this research was able to import tables of 

component-section average ages and calculate the probability of failure for each system. 

The system probability of failure was then output as a seperate data file via the code 

below. The "SystOWA" package called in line two of the below code is the package 

created with the code above for the four major systems. 

library(XLConnect) 
library(SystOWA) 
#The data file pulled in needs to be a table of component‐section average ages.  This will 
produce a results workbook for each bases failed and non‐failed data set 
data = loadWorkbook("/Users/deeringpatrick/Documents/AFIT/1. Thesis/Model Validati
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on/Data Files/Raw Data/Cannon_NoFail.xls") 
 
HVAC = readWorksheet(data, sheet = "HVAC") 
ELEC = readWorksheet(data, sheet = "ELEC") 
FIRE = readWorksheet(data, sheet = "FIRE") 
PLUMB = readWorksheet(data, sheet = "PLUMB") 
 
output = matrix(nrow = nrow(HVAC), ncol = 4, byrow = T ) 
output2 = matrix(nrow = nrow(PLUMB), ncol = 4, byrow = T) 
output3 = matrix(nrow = nrow(ELEC), ncol = 4, byrow = T) 
output4 = matrix(nrow = nrow(FIRE), ncol = 4, byrow = T) 
 
for(i in 1:nrow(HVAC)){ 
  SCI = HVAC[i,1] 
  bldg = HVAC[i,2]; 
  d311=HVAC[i,3];d312=HVAC[i,4];d313=HVAC[i,5];d314=HVAC[i,6];d315=HVAC[i,7];d31
6=HVAC[i,8];d317=HVAC[i,9];d319=HVAC[i,10]; 
  d321=HVAC[i,11];d322=HVAC[i,12];d323=HVAC[i,13];d324=HVAC[i,14];d325=HVAC[i,15
];d329=HVAC[i,16]; 
  d331=HVAC[i,17];d332=HVAC[i,18];d339=HVAC[i,19]; 
  d341=HVAC[i,20];d342=HVAC[i,21];d343=HVAC[i,22];d344=HVAC[i,23];d345=HVAC[i,24
];d346=HVAC[i,25];d347=HVAC[i,26];d348=HVAC[i,27];d349=HVAC[i,28]; 
  d351=HVAC[i,29];d352=HVAC[i,30];d353=HVAC[i,31];d354=HVAC[i,32];d355=HVAC[i,33
];d356=HVAC[i,34];d359=HVAC[i,35]; 
  d361=HVAC[i,36];d362=HVAC[i,37];d363=HVAC[i,38];d364=HVAC[i,39];d365=HVAC[i,40
];d369=HVAC[i,41]; 
  d371=HVAC[i,42];d372=HVAC[i,43];d373=HVAC[i,44];d379=HVAC[i,45]; 
  d391=HVAC[i,46];d392=HVAC[i,47];d399=HVAC[i,48] 
  sys.pof.fail.h = D30(bldg,d311,d312,d313,d314,d315,d316,d317,d319,d321,d322,d323,
d324,d325,d329,d331,d332,d339,d341,d342,d343,d344,d345,d346,d347,d348,d349,d35
1,d352,d353,d354,d355,d356,d359,d361,d362,d363,d364,d365,d369,d371,d372,d373,d
379,d391,d392,d399) 
output[i,]= c(bldg,as.numeric(SCI),as.numeric(1‐sys.pof.fail.h),as.numeric(sys.pof.fail.h)) 
} 
 
rm(list=setdiff(ls(), c("data","output","output2","output3","output4","FIRE","HVAC","PL
UMB","ELEC"))) 
 
for(i in 1:nrow(PLUMB)){ 
  SCI=PLUMB[i,1];bldg=PLUMB[i,2]; 
  d211=PLUMB[i,3];d212=PLUMB[i,4];d213=PLUMB[i,5];d214=PLUMB[i,6];d215=PLUMB[
i,7];d216=PLUMB[i,8];d217=PLUMB[i,9];d219=PLUMB[i,10]; 
  d221=PLUMB[i,11];d222=PLUMB[i,12];d223=PLUMB[i,13];d224=PLUMB[i,14];d225=PL
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UMB[i,15];d229=PLUMB[i,16]; 
  d231=PLUMB[i,17];d232=PLUMB[i,18];d233=PLUMB[i,19];d234=PLUMB[i,20];d235=PL
UMB[i,21];d239=PLUMB[i,22]; 
  d241=PLUMB[i,23];d242=PLUMB[i,24];d243=PLUMB[i,25];d244=PLUMB[i,26];d249=PL
UMB[i,27]; 
  d291=PLUMB[i,28];d292=PLUMB[i,29];d293=PLUMB[i,30];d294=PLUMB[i,31];d295=PL
UMB[i,31];d299=PLUMB[i,32] 
  sys.pof.fail.p = D20(bldg,d211,d212,d213,d214,d215,d216,d217,d219,d221,d222,d223,
d224,d225,d229,d231,d232,d233,d234,d235,d239,d241,d242,d243,d244,d249,d291,d29
2,d293,d294,d295,d299)              
  output2[i,]= c(bldg,as.numeric(SCI),as.numeric(1‐sys.pof.fail.p),as.numeric(sys.pof.fail.
p)) 
}  
 
rm(list=setdiff(ls(), c("data","output","output2","output3","output4","FIRE","HVAC","PL
UMB","ELEC"))) 
 
 
for(i in 1:nrow(ELEC)){ 
  SCI=ELEC[i,1];bldg=ELEC[i,2]; 
  d511=ELEC[i,3];d512=ELEC[i,4];d513=ELEC[i,5];d514=ELEC[i,6];d515=ELEC[i,7];d516=EL
EC[i,8];d519=ELEC[i,9]; 
  d521=ELEC[i,10];d522=ELEC[i,11];d529=ELEC[i,12]; 
  d531=ELEC[i,13];d532=ELEC[i,14];d533=ELEC[i,15];d534=ELEC[i,16];d535=ELEC[i,17];d5
36=ELEC[i,18];d537=ELEC[i,19];d539=ELEC[i,20]; 
  d591=ELEC[i,21];d592=ELEC[i,22];d593=ELEC[i,23];d594=ELEC[i,24];d595=ELEC[i,25];d5
96=ELEC[i,26];d599=ELEC[i,27]; 
  sys.pof.fail.e = D50(bldg,d511,d512,d513,d514,d515,d516,d519,d521,d522,d529,d531,
d532,d533,d534,d535,d536,d537,d539,d591,d592,d593,d594,d595,d596,d599)              
  output3[i,]= c(bldg,as.numeric(SCI),as.numeric(1‐sys.pof.fail.e),as.numeric(sys.pof.fail.
e)) 
} 
 
rm(list=setdiff(ls(), c("data","output","output2","output3","output4","FIRE","HVAC","PL
UMB","ELEC"))) 
 
for(i in 1:nrow(FIRE)){ 
  SCI=FIRE[i,1];bldg=FIRE[i,2]; 
  d411=FIRE[i,3];d412=FIRE[i,4]; 
  d421=FIRE[i,5];d422=FIRE[i,6]; 
  d431=FIRE[i,7]; 
  d441=FIRE[i,8];d442=FIRE[i,9]; 
  d451=FIRE[i,10]; 
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  d491=FIRE[i,11];d492=FIRE[i,12];d493=FIRE[i,13];d494=FIRE[i,14];d499=FIRE[i,15]; 
  sys.pof.fail.f = D40(bldg,d411,d412,d421,d422,d431,d441,d442,d451,d491,d492,d493,
d494,d499)              
  output4[i,]= c(bldg,as.numeric(SCI),as.numeric(1‐sys.pof.fail.f),as.numeric(sys.pof.fail.f
)) 
}   
 
rm(list=setdiff(ls(), c("data","output","output2","output3","output4","FIRE","HVAC","PL
UMB","ELEC"))) 
 
wb = loadWorkbook("Cannon_NoFail_Pull2.xls", create = T) 
createSheet(wb, name = "HVAC") 
writeWorksheet(wb, output, sheet = "HVAC") 
createSheet(wb, name = "PLUMB") 
writeWorksheet(wb, output2, sheet = "PLUMB") 
createSheet(wb, name = "FIRE") 
writeWorksheet(wb, output4, sheet = "FIRE") 
createSheet(wb, name = "ELEC") 
writeWorksheet(wb, output3, sheet = "ELEC") 
saveWorkbook(wb) 
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Appendix C.  R code for contingency analysis and plot output 

The below code used the output from the code presented in Appendix B to 

perform a contingency analysis and plot the associated p values and odds ratios for a 

given system over all possible values of a reliability threshold. 

library(XLConnect) 
data = loadWorkbook("/Users/deeringpatrick/Documents/AFIT/1. Thesis/Model Validati
on/Data Files/Results Data/Threshold Data Files/Consolidated Results_By System.xlsx") 
 
HVAC.Fail = readWorksheet(data, sheet = "Fail", startRow = 97, endRow = 446, startCol 
= 4, endCol = 4, header = FALSE) 
PLUMB.Fail = readWorksheet(data, sheet = "Fail", startRow = 447, endRow = 466, startC
ol = 4, endCol =4, header = FALSE) 
FIRE.Fail = readWorksheet(data, sheet = "Fail", startRow = 61, endRow = 96, startCol = 4
, endCol = 4, header = FALSE) 
ELEC.Fail = readWorksheet(data, sheet = "Fail", startRow = 2, endRow = 60, startCol = 4, 
endCol =4, header = FALSE) 
 
 
HVAC.NoFail = readWorksheet(data, sheet = "NoFail", startRow = 97, endRow = 446, sta
rtCol = 4, endCol = 4, header = FALSE) 
PLUMB.NoFail = readWorksheet(data, sheet = "NoFail", startRow = 447, endRow = 466, 
startCol = 4, endCol =4, header = FALSE) 
FIRE.NoFail = readWorksheet(data, sheet = "NoFail", startRow = 61, endRow = 96, startC
ol = 4, endCol = 4, header = FALSE) 
ELEC.NoFail = readWorksheet(data, sheet = "NoFail", startRow = 2, endRow = 60, startC
ol = 4, endCol =4, header = FALSE) 
 
output = NULL 
x = 0 
 
for(a in 0:200){ 
FF = sum(HVAC.Fail<=x) 
FN = sum(HVAC.Fail>x) 
NF = sum(HVAC.NoFail<=x) 
NN = sum(HVAC.NoFail>x) 
 
c.test = matrix(c(FF,NF,FN,NN), nrow = 2, ncol = 2, byrow = F) 
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f.test = fisher.test(c.test) 
 
p.val = f.test$p.value 
o.ratio = f.test$estimate 
output = rbind(output, data.frame(x, p.val, o.ratio)) 
x = x+0.5 
rm("FF","FN","NF","NN","c.test","f.test","p.val","o.ratio") 
} 
 
output2 = NULL 
x2 = 0 
 
for(a in 0:200){ 
  FF = sum(PLUMB.Fail<=x2) 
  FN = sum(PLUMB.Fail>x2) 
  NF = sum(PLUMB.NoFail<=x2) 
  NN = sum(PLUMB.NoFail>x2) 
   
  c.test2 = matrix(c(FF,NF,FN,NN), nrow = 2, ncol = 2, byrow = F) 
   
  f.test2 = fisher.test(c.test2) 
   
  p.val2 = f.test2$p.value 
  o.ratio2 = f.test2$estimate 
  output2 = rbind(output2, data.frame(x2, p.val2, o.ratio2)) 
  x2 = x2+0.5 
  rm("FF","FN","NF","NN","c.test2","f.test2","p.val2","o.ratio2") 
} 
 
output3 = NULL 
x3 = 0 
 
for(a in 0:200){ 
  FF = sum(FIRE.Fail<=x3) 
  FN = sum(FIRE.Fail>x3) 
  NF = sum(FIRE.NoFail<=x3) 
  NN = sum(FIRE.NoFail>x3) 
   
  c.test3 = matrix(c(FF,NF,FN,NN), nrow = 2, ncol = 2, byrow = F) 
   
  f.test3 = fisher.test(c.test3) 
   
  p.val3 = f.test3$p.value 
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  o.ratio3 = f.test3$estimate 
  output3 = rbind(output3, data.frame(x3, p.val3, o.ratio3)) 
  x3 = x3+0.5 
  rm("FF","FN","NF","NN","c.test3","f.test3","p.val3","o.ratio3") 
} 
 
output4 = NULL 
x4 = 0 
 
for(a in 0:200){ 
  FF = sum(ELEC.Fail<=x4) 
  FN = sum(ELEC.Fail>x4) 
  NF = sum(ELEC.NoFail<=x4) 
  NN = sum(ELEC.NoFail>x4) 
   
  c.test4 = matrix(c(FF,NF,FN,NN), nrow = 2, ncol = 2, byrow = F) 
   
  f.test4 = fisher.test(c.test4) 
   
  p.val4 = f.test4$p.value 
  o.ratio4 = f.test4$estimate 
  output4 = rbind(output4, data.frame(x4, p.val4, o.ratio4)) 
  x4 = x4+0.5 
  rm("FF","FN","NF","NN","c.test4","f.test4","p.val4","o.ratio4") 
} 
 
plot(output4$x4,output4$p.val4, type = "l", col="red", xlab = "", ylab = "", ylim = c(0,2)) 
par(new=TRUE) 
plot(output4$x4,output4$o.ratio4, type = "l", col = "green", xlab = "", ylab = "",ylim = c(0
,2)) 
title(main = "PoF Model Performance: ELEC System", ylab = "P‐Value/Odds Ratio", xlab = 
"Failure Threshold") 
 
plot(output3$x3,output3$p.val3, type = "l", col="red", xlab = "", ylab = "", ylim = c(0,3)) 
par(new=TRUE) 
plot(output3$x3,output3$o.ratio3, type = "l", col = "green", xlab = "", ylab = "",ylim = c(0
,3)) 
title(main = "PoF Model Performance: FIRE System", ylab = "P‐Value/Odds Ratio", xlab = 
"Failure Threshold") 
 
plot(output2$x2,output2$p.val2, type = "l", col="red", xlab = "", ylab = "", ylim = c(0,3)) 
par(new=TRUE) 
plot(output2$x2,output2$o.ratio2, type = "l", col = "green", xlab = "", ylab = "",ylim = c(0
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,3)) 
title(main = "PoF Model Performance: PLUM System", ylab = "P‐Value/Odds Ratio", xlab 
= "Failure Threshold") 
 
plot(output$x,output$p.val, type = "l", col="red", xlab = "", ylab = "", ylim = c(0,2)) 
par(new=TRUE) 
plot(output$x,output$o.ratio, type = "l", col = "green", xlab = "", ylab = "",ylim = c(0,2)) 
title(main = "PoF Model Performance: HVAC System", ylab = "P‐Value/Odds Ratio", xlab 
= "Failure Threshold") 

``` 
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Appendix D.  Cannon AFB HVAC failure data 

The data collected for this potion of the research required system lifetime failure 

data.  IWIMS data was only available from 1995-2015.  Therefore, this research did not 

consider failure data for facilities constructed prior to 1995.  Of the 175 HVAC systems 

in the BUILDER® inventory for Cannon AFB, 58 were commissioned on or after 1995.  

Of those 58 systems, this research found data in IWIMS for 40 of them.  The data 

presented below displays the data for those 40 systems. 

 

Building 
Number 

Time to 
Failure 

Time Between 
Failures 

System Age 
(yrs) 

Failure 
Number 

00128 971 971 13 1 
00128 999 28 13 2 
00128 1346 347 13 3 
00128 1664 318 13 4 
00128 1868 204 13 5 
00128 2295 427 13 6 
00128 2590 295 13 7 
00128 3261 671 13 8 
00128 3367 106 13 9 
00128 3767 400 13 10 
00128 3856 89 13 11 
00128 4446 590 13 12 
00158 925 925 12 1 
00158 1257 332 12 2 
00158 1726 469 12 3 
00158 1728 2 12 4 
00158 1799 71 12 5 
00158 2182 383 12 6 
00158 2661 479 12 7 
00158 2805 144 12 8 
00158 2818 13 12 9 
00158 2853 35 12 10 
00158 3066 213 12 11 
00158 3148 82 12 12 
00158 3301 153 12 13 
00158 3640 339 12 14 
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Building 
Number 

Time to 
Failure 

Time Between 
Failures 

System Age 
(yrs) 

Failure 
Number 

00158 3808 168 12 15 
00158 3850 42 12 16 
00158 3939 89 12 17 
00173 3987 3987 6 1 
00208 354 354 21 1 
00208 362 8 21 2 
00208 366 4 21 3 
00208 382 16 21 4 
00208 431 49 21 5 
00208 568 137 21 6 
00208 589 21 21 7 
00208 596 7 21 8 
00208 910 314 21 9 
00208 1075 165 21 10 
00208 1727 652 21 11 
00208 1752 25 21 12 
00208 1893 141 21 13 
00208 2216 323 21 14 
00208 2384 168 21 15 
00208 2430 46 21 16 
00208 5182 2752 21 17 
00208 5203 21 21 18 
00208 5226 23 21 19 
00208 5434 208 21 20 
00208 5486 52 21 21 
00208 6946 1460 21 22 
00208 7093 147 21 23 
00208 7255 162 21 24 
00208 7352 97 21 25 
00234 719 719 4 1 
00234 871 152 4 2 
00251 1253 1253 20 1 
00251 1270 17 20 2 
00278 897 897 5 1 
00300 913 913 17 1 
00300 1321 408 17 2 
00300 2377 1056 17 3 
00300 2460 83 17 4 
00300 3552 1092 17 5 
00300 3860 308 17 6 
00300 3910 50 17 7 
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Building 
Number 

Time to 
Failure 

Time Between 
Failures 

System Age 
(yrs) 

Failure 
Number 

00300 4003 93 17 8 
00300 4161 158 17 9 
00300 4196 35 17 10 
00300 4910 714 17 11 
00300 5310 400 17 12 
00300 5614 304 17 13 
00300 5744 130 17 14 
00300 5850 106 17 15 
00300 6003 153 17 16 
00307 2056 2056 6 1 
00355 155 155 18 1 
00355 355 200 18 2 
00355 361 6 18 3 
00355 523 162 18 4 
00355 525 2 18 5 
00355 544 19 18 6 
00355 546 2 18 7 
00355 557 11 18 8 
00355 567 10 18 9 
00355 574 7 18 10 
00355 585 11 18 11 
00355 592 7 18 12 
00355 733 141 18 13 
00355 762 29 18 14 
00355 916 154 18 15 
00355 981 65 18 16 
00355 1075 94 18 17 
00355 1419 344 18 18 
00355 1660 241 18 19 
00355 3255 1595 18 20 
00356 544 544 19 1 
00356 601 57 19 2 
00356 709 108 19 3 
00356 799 90 19 4 
00356 875 76 19 5 
00356 904 29 19 6 
00356 1007 103 19 7 
00356 1126 119 19 8 
00356 1127 1 19 9 
00575 1481 1481 11 1 
00575 1857 376 11 2 
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Building 
Number 

Time to 
Failure 

Time Between 
Failures 

System Age 
(yrs) 

Failure 
Number 

00575 2082 225 11 3 
00575 2158 76 11 4 
00575 3078 920 11 5 
00575 3117 39 11 6 
00575 3560 443 11 7 
00724 150 150 5 1 
00724 338 188 5 2 
00724 367 29 5 3 
00724 716 349 5 4 
00724 884 168 5 5 
00724 888 4 5 6 
00724 996 108 5 7 
00724 1040 44 5 8 
00724 1104 64 5 9 
00724 1412 308 5 10 
00724 1473 61 5 11 
00724 1488 15 5 12 
00724 1770 282 5 13 
00777 370 370 3 1 
00777 793 423 3 2 
00848 258 258 3 1 
00848 489 231 3 2 
00848 636 147 3 3 
00848 658 22 3 4 
00848 671 13 3 5 
00850 709 709 9 1 
00850 2818 2109 9 2 
00850 2872 54 9 3 
01155 294 294 20 1 
01155 854 560 20 2 
01155 896 42 20 3 
01155 1225 329 20 4 
01155 1232 7 20 5 
01155 1278 46 20 6 
01155 1324 46 20 7 
01155 1414 90 20 8 
01155 1450 36 20 9 
01155 1463 13 20 10 
01155 1466 3 20 11 
01155 1470 4 20 12 
01155 1471 1 20 13 
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Building 
Number 

Time to 
Failure 

Time Between 
Failures 

System Age 
(yrs) 

Failure 
Number 

01155 1478 7 20 14 
01155 1488 10 20 15 
01155 1491 3 20 16 
01155 1492 1 20 17 
01155 1498 6 20 18 
01155 1522 24 20 19 
01155 3158 1636 20 20 
01155 3272 114 20 21 
01155 3607 335 20 22 
01155 4167 560 20 23 
01155 4551 384 20 24 
01155 5810 1259 20 25 
01155 5971 161 20 26 
01155 6008 37 20 27 
01155 6143 135 20 28 
01155 6597 454 20 29 
01155 6713 116 20 30 
01155 6764 51 20 31 
01155 6825 61 20 32 
01155 6948 123 20 33 
01155 6993 45 20 34 
01155 6996 3 20 35 
01155 7063 67 20 36 
01155 7098 35 20 37 
01155 7210 112 20 38 
01155 7218 8 20 39 
01159 238 238 20 1 
01159 905 667 20 2 
01159 1051 146 20 3 
01159 1075 24 20 4 
01159 1087 12 20 5 
01159 1088 1 20 6 
01159 1092 4 20 7 
01159 1100 8 20 8 
01159 1108 8 20 9 
01159 1117 9 20 10 
01159 1122 5 20 11 
01159 1123 1 20 12 
01159 1134 11 20 13 
01159 1148 14 20 14 
01159 1225 77 20 15 
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Building 
Number 

Time to 
Failure 

Time Between 
Failures 

System Age 
(yrs) 

Failure 
Number 

01159 1232 7 20 16 
01159 1233 1 20 17 
01159 1269 36 20 18 
01159 1302 33 20 19 
01159 1436 134 20 20 
01159 1519 83 20 21 
01159 1838 319 20 22 
01159 2271 433 20 23 
01159 4547 2276 20 24 
01159 4643 96 20 25 
01159 4650 7 20 26 
01159 4938 288 20 27 
01159 5082 144 20 28 
01159 7158 2076 20 29 
01159 7210 52 20 30 
01159 7564 354 20 31 
01161 166 166 17 1 
01161 216 50 17 2 
01161 270 54 17 3 
01161 290 20 17 4 
01161 501 211 17 5 
01161 507 6 17 6 
01161 636 129 17 7 
01161 803 167 17 8 
01161 850 47 17 9 
01161 874 24 17 10 
01161 892 18 17 11 
01161 942 50 17 12 
01161 962 20 17 13 
01161 971 9 17 14 
01161 1180 209 17 15 
01161 2329 1149 17 16 
01161 3953 1624 17 17 
01161 5274 1321 17 18 
01161 5316 42 17 19 
01275 176 176 2 1 
01275 523 347 2 2 
01275 524 1 2 3 
01435 453 453 5 1 
01435 720 267 5 2 
01435 1067 347 5 3 
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Building 
Number 

Time to 
Failure 

Time Between 
Failures 

System Age 
(yrs) 

Failure 
Number 

01435 1236 169 5 4 
01435 1277 41 5 5 
01435 1614 337 5 6 
01435 1732 118 5 7 
01824 1721 1721 6 1 
01825 1949 1949 6 1 
02134 876 876 20 1 
02134 1218 342 20 2 
02134 1235 17 20 3 
02134 1443 208 20 4 
02134 1624 181 20 5 
02134 2045 421 20 6 
02134 4106 2061 20 7 
02134 5510 1404 20 8 
02134 5645 135 20 9 
02134 7065 1420 20 10 
02206 855 855 21 1 
02206 883 28 21 2 
02206 1065 182 21 3 
02206 1138 73 21 4 
02206 1297 159 21 5 
02206 1437 140 21 6 
02206 1440 3 21 7 
02206 1443 3 21 8 
02206 1451 8 21 9 
02206 1452 1 21 10 
02206 1538 86 21 11 
02206 1600 62 21 12 
02206 1618 18 21 13 
02206 1642 24 21 14 
02206 1663 21 21 15 
02206 1696 33 21 16 
02206 1717 21 21 17 
02206 1740 23 21 18 
02206 1766 26 21 19 
02206 1800 34 21 20 
02206 1850 50 21 21 
02206 1927 77 21 22 
02206 2017 90 21 23 
02206 2019 2 21 24 
02206 2115 96 21 25 
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Building 
Number 

Time to 
Failure 

Time Between 
Failures 

System Age 
(yrs) 

Failure 
Number 

02206 2213 98 21 26 
02206 2347 134 21 27 
02206 2361 14 21 28 
02206 4960 2599 21 29 
02206 5302 342 21 30 
02206 5456 154 21 31 
02206 7247 1791 21 32 
02206 7477 230 21 33 
02206 7484 7 21 34 
02220 1748 1748 12 1 
02220 4235 2487 12 2 
02320 1070 1070 19 1 
02320 1077 7 19 2 
02320 1218 141 19 3 
02320 6095 4877 19 4 
02320 6524 429 19 5 
02370 993 993 6 1 
02370 1330 337 6 2 
02370 1636 306 6 3 
02371 736 736 4 3 
02371 1101 365 4 1 
02371 1118 17 4 2 
02379 1006 1006 5 1 
02379 1263 257 5 2 
02379 1626 363 5 3 
02379 1705 79 5 4 
04081 610 610 18 1 
04081 840 230 18 2 
04081 972 132 18 3 
04081 1281 309 18 4 
04081 1734 453 18 5 
04081 5881 4147 18 6 
04081 6208 327 18 7 
04082 543 543 18 1 
04605 136 136 4 1 
04605 351 215 4 2 
04605 824 473 4 3 
04605 1038 214 4 4 
04605 1046 8 4 5 
04605 1094 48 4 6 
04606 316 316 3 2 
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Building 
Number 

Time to 
Failure 

Time Between 
Failures 

System Age 
(yrs) 

Failure 
Number 

04606 477 161 3 3 
04606 520 43 3 4 
04606 538 18 3 5 
04606 598 60 3 6 
04606 729 131 3 1 
04607 499 499 3 4 
04607 566 67 3 5 
04607 728 162 3 1 
04607 736 8 3 2 
04607 741 5 3 3 
04609 125 125 2 1 
04609 485 360 2 2 
04619 371 371 2 1 
04619 387 16 2 2 
04619 540 153 2 3 
04619 587 47 2 4 
04620 387 387 2 1 
04620 400 13 2 2 
04620 418 18 2 3 
04620 552 134 2 4 
04620 583 31 2 5 
04623 362 362 2 1 
04623 364 2 2 2 
04623 372 8 2 3 
04623 376 4 2 4 
04623 561 185 2 5 
04623 582 21 2 6 
04624 223 223 3 1 
04624 234 11 3 2 
04624 237 3 3 3 
04624 527 290 3 4 
04624 615 88 3 5 
04624 622 7 3 6 
04624 636 14 3 7 
04624 639 3 3 8 
04624 876 237 3 9 
04624 919 43 3 10 
04624 1017 98 3 11 
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Appendix E. Duane Plots by Installation 

 

Figure E-1: Barksdale AFB HVAC Duane Plot 

 

 

Figure E-2: Cannon AFB HVAC Duane Plot 
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Figure E-3: Davis Monthan AFB HVAC Duane Plot 

 

 

Figure E-4: Keesler AFB HVAC Duane Plot 
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Figure E-5: Patrick AFB HVAC Duane Plot 

 

 

Figure E-6: Scott AFB HVAC Duane Plot 
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Appendix F. Cannon AFB HVAC System Duane Plots 

 

 

Figure F-1:  Building 128 HVAC Duane Plot 

 

 

Figure F-2: Building 158 HVAC Duane Plot 
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Figure F-3: Building 208 HVAC Duane Plot 

 

 

Figure F-4: Building 234 HVAC Duane Plot 
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Figure F-5: Building 251 HVAC Duane Plot 

 

 

Figure F-6: Building 300 HVAC Duane Plot 
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Figure F-7: Building 355 HVAC Duane Plot 

 

 

Figure F-8: Building 356 HVAC Duane Plot 
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Figure F-9: Building 575 HVAC Duane Plot 

 

 

Figure F-10: Building 724 HVAC Duane Plot 
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Figure F-11: Building 777 HVAC Duane Plot 

 

 

Figure F-12: Building 848 HVAC Duane Plot 
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Figure F-13: Building 850 HVAC Duane Plot 

 

 

Figure F-14: Building 1155 HVAC Duane Plot 
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Figure F-15: Building 1159 HVAC Duane Plot 

 

Figure F-16: Building 1161 HVAC Duane Plot 
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Figure F-17: Building 1275 HVAC Duane Plot 

 

Figure F-18: Building 1435 HVAC Duane Plot 
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Figure F-19: Building 2134 HVAC Duane Plot 

 

Figure F-20: Building 2206 HVAC Duane Plot 
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Figure F-21: Building 2220 HVAC Duane Plot 

 

 

Figure F-22: Building 2320 HVAC Duane Plot



 

168 

 

Figure F-23: Building 2370 HVAC Duane Plot 

 

Figure F-24: Building 2371 HVAC Duane Plot
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Figure F-25: Building 2379 HVAC Duane Plot 

 

Figure F-26: Building 4081 HVAC Duane Plot 
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Figure F-27: Building 4605 HVAC Duane Plot 

 

 

Figure F-28: Building 4606 HVAC Duane Plot
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Figure F-29: Building 4607 HVAC Duane Plot 

 

Figure F-30: Building 4609 HVAC Duane Plot 
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Figure F-31: Building 4619 HVAC Duane Plot 

 

Figure F-32: Building 4620 HVAC Duane Plot 
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Figure F-33: Building 4623 HVAC Duane Plot 

 

Figure F-34: Building 4624 HVAC Duane Plot 
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Appendix G: Method and preliminary results for Semi-Markov Process 
 

To serve as stimuli for follow on research, this appendix demonstrates and 

alternative method for evaluating civil system reliability via a finite state Semi-Markov 

Process.  The below method is adapted from Warr (n.d.) in which the author simplifies 

the Semi-Markov process.  The reliability results calculated use the data collected from 

Cannon AFB HVAC systems as presented in Appendix D.  The calculated results are the 

output of the R statistical software code developed by Freels and Warr (2015).  Due to 

the time constraints of this thesis effort, this research was unable to holistically evaluate 

the proposed method.   However, based on preliminary results, this research deems the 

below method worthy of further analysis to determine its effectiveness in providing 

accurate reliability calculations for repairable civil systems. 

Finite State Semi-Markov Process (SMP) 

Semi-Markov Processes (SMP) is a stochastic process used to understand 

statistical properties in survival analysis, reliability analysis, DNA analysis, and other 

transition or “state” type processes.  Despite their general applicability, Warr (n.d.) 

discusses that practitioners don’t widely use SMPs.  Moreover, Warr (n.d) also 

summarizes the straightforward nature of solving SMPs.  Using the data from Appendix 

D, this research employed Warr’s method to calculate a measure of reliability for 

Heating, Ventilation, and Cooling (HVAC) systems given a systems age in order assess 

the accuracy of the PoF model and SCI model for HVAC systems.  

This research will model the reliability of a systems using SMP with a finite 

number of failure states.  A section discussing these states and their properties will be 
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offered later in this appendix.  The below sections introduces statistical quantities that can 

be obtained when employing SMPs.  Subsequent sections will explain how to solve these 

quantities and how they relate to a measurement of reliability. 

Figure G-1 displays a simple example of a finite state SMP.  State 1 represents a 

“working” state, state 2 an “under repair” state, and state 3 an “unrepairable” state.  Fij(x) 

and pij are notations for cumulative distribution function (CDF) of transition time and 

probability of transitioning from state i to state j, respectively.  Ultimately, Figure G-1 

highlights the three necessary pieces of information to define an SMP: 1) the number of 

states, n; 2) the CDF of the waiting time distribution from state i to state j, Fij(x); and 3) 

the probability that the next state in the process is j, given the process entered state i 

(Warr, n.d.).  These three pieces of information will enable the use of the SMP to 

calculate statistical quantities of interest.  Table G-1 displays the statistical quantities 

available via a SMP.  This research will utilize Pij(t) to calculate a measure of system 

reliability (Warr, n.d.). 

 

Table G-1: Statistical Quantities available through SMP 

Notation Description 
Pij(t) The probability the process is in state j (as a function of time). 

Gij(t) The first passage distribution of the time to reach state j. 
vij(k;t) The probability of reaching a state j, k number of times (as a function of 

time). 
Vij(k;t) The probability of reaching a state j, k or fewer times (as a function of 

time). 
Mij(t) The expected number of times the process has been in state j at time t 
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Figure G-1: semi-Markov Process Example (adapted from Warr, n.d.) 

 

Notation Convention 

This section will explain some of the basic notations associated with SMPs.  This 

method will utilize cumulative probability distributions (CDFs) of the waiting time with 

basic form Fij(x)  and basic transition probabilities pij.  From these values and statistical 

quantities identified in Table G-1, the following notations are presented: 

 
௜݂௝ሺݔሻ ൌ ሻݔ௜௝ሺܨ

݀
ݔ݀

 

 

(28) 

 
݃௜௝ሺݔሻ ൌ ሻݔ௜௝ሺܩ

݀
ݔ݀

 

 

(29) 

ሻݔ௜௝ሺݍ  ൌ ௜௝݌ ௜݂௝ሺݔሻ (30) 

ሻݔ௜௝ሺߜ  ൌ ൜
0 ݂݅ ݅ ് ݆
1 ݂݅ ݅ ൌ ݆ 

(31) 

 
݄௜௝ሺݔሻ ൌ ሻݔ௜௝ሺݍ௜௝෍ߜ

௡

௝ୀଵ

 

 

(32) 

Additionally, SMPs involve some basic matrix algebra.  Many of the values listed 

in equations 28-32 will populate a matrix with similar notation.  Therefore, this research 

will represent matrices in boldfaced print.  For example, matrix F(x) represents the 

matrix containing Fij(x) for all i and j.  Lastly, SMPs utilize Laplace transforms to 

simplify calculations.  This research will represent the Laplace transform of a generic 

1 

 ሻݔଶଵሺܨଶଵ݌

ଵଶܨ ሺݔሻ ሻݔଶଷሺܨଶଷ݌

3 2 
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function F(x) with a tilde as such, ܨ෨(s).  Similarly, a matrix containing transformed 

functions is represented with boldfaced text and a tilde, i.e. ࡲ෩(s) (Warr, n.d.). 

Laplace Transforms 

Matrix operations combined with statistical distributions can result in very 

complicated calculations.  For simplicity SMPS use Laplace transformations to make 

calculations similar to solving a system of linear equations (Warr, n.d.).  Given a generic 

function F(t), its Laplace transform ܨ෨(s) is: 

ሻݏ෨ሺܨ ൌ 	න ݁ି௦௧ܨሺݐሻ݀ݐ
ஶ

଴
 

 

(33) 

Once a function is transformed, matrix operations are completed in the transform 

domain to compute functions of the statistical quantity of interest.  After functions are 

computed in the transform domain, they must be inversed back to the time domain.  For a 

function F(t) and its Laplace transform ܨ෨(s), the inversion is: 

ሻݐሺܨ ൎ 	෍ሺെ1ሻ௝
ே

௝ୀ଴

௝ܴ߱݁ ൤ܨ෨ ൬
ܣ
ݐ2
൅
ߨ݆
ݐ݅
൰൨ 

 

(34) 

where Re[] is the real portion of the function and ௝߱is a weight associated with each 

term.  N, A, and ௝߱ control the accuracy of the approximation (Warr, n.d.).  Due to the 

complex nature of Laplace transforms and their inversions, this research will employ the 

R statistical software in conjunction with the code developed by Freels and Warr (2015) 

to compute the Laplace transforms and inversions for all statistical distributions. 

Time-Dependent State Probabilities 

Table G-1 presented statistical quantities this research can compute using a SMP.  

The primary statistical quantity of interest to this research is the time-dependent state 
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probability.  This quantity provides the probability that a SMP is in a particular state at 

time, t.  Equation 35 shows the formula necessary to find these probabilities, 

ሻݏ෩ሺࡼ ൌ
1
ݏ
൫ࡵ െ ሻ൯ݏ෥ሺࢗ

ିଵ
ቀࡵ െ  ሻቁݏ෩ሺࢎ

(35) 

where I is the identity matrix (Warr, n.d.).  Given the matrix ࡼ෩(s) in the transform 

domain, equation 34 inverses the functions in this matrix back into the time domain.  

Once in the time domain, this research will input a given systems age to determine the 

individual state probabilities for each state. 

Future researchers must define the state space, E, in a manner that lends itself to 

the desired reliability calculations.  During this preliminary analysis, this research 

focused on calculating the state probability for a given system.  E consisted of multiple 

sequential states with individual transition CDFs.  If E is the number of failures a system 

has encountered, this preliminary analysis calculated the probability that a system has 

seen 0, 1, 2, 3, 4, …etc. failures in a given time, t. 

In contrast to strict failure state probabilities, future research may focus on 

availability as introduced by Høland and Rausand (1994) as a more appropriate measure 

for assessing the probability that a repairable system will be in a operational state at time 

t.  Limnious (2011) employs a method for calculating availability from general state 

SMPs.  In this method, Limnious (2011) classifies states into two general categories: 

failed, D, or operational, U.  Given failed and operational states, availability at time t, 

A(t), is calculated as: 

ሻݐሺܣ ∶ൌ ሺܼ௧ࡼ ∈ ܷሻ (36) 
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Defining the transition probabilities 

Transition probabilities pij define the probability that the next state in the SMP is 

j, given that the process is currently in state i (Warr, n.d.).  The transition probabilities for 

this preliminary analysis was simple and required no data collection.  Because E was 

defined as sequential failure states, the transitional probability for the next state was 

always pij = 1.0. 

Defining the transition CDFs 

This analysis used the HVAC failure data from Cannon Air Force Base in 

Appendix D to determine the failure time distributions for each state.  The goodness of fit 

tests displayed that the failure time distributions fit both the Weibull and Lognormal 

distributions.  Table G-2 displays the goodness of fit results for both distributions.  In 

addition to the goodness of fit results, this table displays a decreasing trend in the meant 

time between failures, an intuitive assumption for repairable systems.  Future research 

should focus on data collection to improve the fit of failure time distributions for higher-

count system failures. 
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Table G-2: State transition time CDF parameters and goodness of fit 

State n 
Weibull 
scale 

Weibull 
shape 

A.D. 
test 

A.D. 
result 

Log-
normal 
mean 

Log-
normal 
std dev 

A.D. 
test 

A.D. 
result 

1 33 774.086 1.421 0.392 
not 
rejected 6.265 0.789 0.403 

not 
rejected 

2 29 287.268 0.709 0.784 rejected 4.865 1.695 1.152 rejected 

3 24 164.942 0.742 0.295 
not 
rejected 4.298 1.768 0.686 rejected 

4 21 133.967 0.964 0.452 
not 
rejected 4.258 1.422 0.704 rejected 

5 19 173.316 0.755 0.362 
not 
rejected 4.442 1.445 0.330 

not 
rejected 

6 17 176.528 0.516 0.361 
not 
rejected 4.158 2.057 0.293 

not 
rejected 

7 15 192.991 0.638 0.225 
not 
rejected 4.415 1.751 0.271 

not 
rejected 

8 12 137.891 0.571 0.370 
not 
rejected 3.972 1.935 0.432 

not 
rejected 

9 12 84.030 0.803 0.216 
not 
rejected 3.680 1.634 0.362 

not 
rejected 

10 11 128.280 0.561 0.317 
not 
rejected 3.900 1.934 0.231 

not 
rejected 

11 10 148.836 0.678 0.311 
not 
rejected 4.165 1.747 0.350 

not 
rejected 

12 9 90.137 0.599 0.227 
not 
rejected 3.570 1.923 0.203 

not 
rejected 

13 8 96.023 0.708 0.443 
not 
rejected 3.703 1.861 0.450 

not 
rejected 

 

State Probability Results 

Given the transition CDFs displayed in Table G-2, this analysis determined both 

the Weibull and Lognormal distributions effectively represent the transition distributions 

for successive failures.  With these distributions and the R statistical software code 

developed by Freels and Warr (2015), this analysis calculated reliability measures for the 

HVAC systems at Cannon AFB.  The state space defined is a simple 3 state system, 

depicted in Figure G-2. 
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Figure G-2: HVAC System Failure State Space 

 

The states defined represent a HVAC system having zero, one, and two failures as 

its current state.  The specific state probabilities displayed in Table G-3 provide a 

probability for a system in a specific state, what is the probability that the system will 

remain in that state over the next 365 days.  Additionally, Table G-3 displays the 

probability, give a system is currently in State 1, what is the probability it will stay in 

state 1 or transition to States 2 and 3 in 365 days. 

 

Table G-3: Cannon AFB HVAC Reliability Calculations, t = 365 days 

Specific State Probabilities 
  Lognormal Weibull 
State 1 0.6753 0.7092 
State 2 0.2793 0.3057 
State 3 0.1848 0.1648 
Probability of Reaching a state: Given current state = State 1 
State 1 0.6753 0.7092 
State 2 0.1804 0.1620 
State 3 0.0702 0.0637 

 

The results of this analysis show realistic reliability calculations and are 

representative of what should be expected for a repairable system.  The results show that 

as systems begin to accumulate failures, the probability of seeing a successive failure 

1 

ଵଶܨଵଶ݌ ሺݔሻ ሻݔଶଷሺܨଶଷ݌

3 2 

Zero Fails One Fail Two Fails 
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increases.  Additionally, based on the nature of the failure documented (Emergency and 

Urgent), the method displays realistic calculations for seeing an event of that magnitude 

multiple times in a single year.  These preliminary results display that SMPs are a viable 

tool for reliability analysis of repairable systems.  The results and methods above provide 

a general framework for reliability analysis using SMPs.  However, further research is 

required to determine the legitimacy of this method for use with repairable civil systems 

and its application to Air Force civil systems. 
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